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1. INTRODUCTION
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1. INTRODUCTION

Evidence-driven disaster risk manage-
ment (DRM) relies upon many different 
data types, information sources, and 
types of models to be effective. Tasks 
such as weather modelling, earthquake  
fault line rupture, or the development 
of dynamic urban exposure measures 
involve complex science and large 
amounts of data from a range of 
sources. Even experts can struggle 
to develop models that enable the 
understanding of the potential impacts 
of a hazard on the built environment 
and society. 

In this context, this guidance note 
explores how new approaches in 
machine learning can provide new 
ways of looking into these complex 
relationships and provide more acc-
urate, efficient, and useful answers. 

The goal of this document is to 
provide a concise, demystifying ref-
erence that readers, from project 
managers to data scientists, can use 
to better understand how machine 
learning can be applied in disaster 
risk management projects.

There are many sources of information 
on this complex and evolving set of 
technologies. Therefore, this guidance 
note is aimed to be as focused as 
possible, providing basic information 
and DRM-specific case studies and  
directing readers to additional re-
sources including online videos, info- 
graphics, courses, and articles for  
further reference. 

A machine learning (ML) algorithm is a 
type of computer program that learns 
to perform specific tasks based on 
various data inputs or rules provided by 
its designer. Machine learning is a subset 
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of artificial intelligence (AI), but the two 
terms are often used interchangeably. 
For a thorough discussion of the 
differences and similarities of the terms  
ML and AI, see Section 2. As the name 
implies, an ML algorithm’s purpose is to 
“learn” from previous data and output 
a result that adds information and 
insight that was not previously known. 
This approach enables actions to be 
taken on the information gathered from 
the data; sometimes in near real time, 
like suggested web search results, and 
sometimes with longer term human 
input, like many of the DRM case 
studies presented in this document. 

Over the past few decades, there 
has been an enormous increase in 
computational capacity and speed and 
available sensor data, exponentially 
increasing the volume of available 
data for analysis. 

This has allowed the capabilities of 
ML algorithms to advance to nearly 
ubiquitous impact on many aspects  
of society. 

Machine learning and artificial intell-
igence have become household terms, 
crossing from academia and specialized 
industry applications into everyday 
interactions with technology—from 
image, sound, and voice recognition 
features of our smartphones to 
seamlessly recommending items in 
online shopping, from mail sorting to 
ranking results of a search engine. The 
same technology is being leveraged 
to answer bigger questions in society, 
including questions about sustainable 
development, humanitarian assistance, 
and disaster risk management. 

When several ML algorithms work 
together, for example, when fed by a 
large quantity of physical sensors, it is 
possible for a computer to interact with 
the physical world in such a way that the 
computer system, or robot, appears to 

be behaving intelligently. For example, 
self-driving cars, robotics that mimic 
and surpass human capacities, and 
supercomputers can now outperform 
humans on specialized tasks. The 
same expectation is, and should be, 
held for ML as it applies to improving 
our capacity to accurately, efficiently, 
and effectively answer pressing soc-
ietal questions. The case studies in 
this guidance note range from the 
identification of hurricane and cyclone 
damage-prone buildings to mapping 
the informal settlements that house 
the most vulnerable urban populations. 

For the understanding of disaster risk, 
machine learning applies predominantly 
to methods used in the classification 
or categorization of remotely sensed 
satellite, aerial, drone, and even street-
level imagery, capitalizing on a large 
body of work on image recognition and 
classification. But applications also 
span other types of data: from seismic 
sensor data networks and building 
inspection records to social media 
posts. All the advancements made in 
the applications of ML can and are being 
used to solve bigger issues confronting 
humans, from making the most of our 
land to preparing for and recovering 
from crises.

Photo Credit: WB/DaLA team
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2. A MACHINE LEARNING PRIMER

Photo Credit: Courtesy of Aziz Kountche, Africa Drone Service
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2. A MACHINE LEARNING PRIMER

2.1 WHAT IS MACHINE 
LEARNING?

Machine learning is a type of artificial intelligence. ML 
algorithms, some more simple and narrowly focused than 
others, have been a part of computer science since the 
late 1950s. Driven by computer vision, ML algorithms were 
pioneered in fields like satellite remote sensing and statistical 
data analysis. Now they power many different aspects of our 
everyday digital lives, from search engines to online shopping. 

Artificial intelligence (AI) was founded as an academic 
discipline in 1956. Although AI is often used as a synonym for 
machine learning, there are some major differences that need 
disambiguation. AI has become a catch-all term that includes 
all machine learning software as well as artificial general 
intelligence (AGI), or strong AI. AGI refers to possible, future 
versions of AI computers that are generalized, self-aware, 
and indistinguishable to humans when tested. This is not the 
current state of AI and not the focus of this document.

Machine learning algorithms that 
are trained by humans based on pre-
existing data are called “supervised,” 
whereas those that learn solely from 
data without human input are referred 
to as “unsupervised.” This traditional 
dichotomous separation is becoming 
more and more blurred every day, as 
projects employing ML algorithms 
make use of both types. Sometimes 
these methods are easily categorizable, 
such as when a project employs an 
unsupervised ML algorithm in one 
step and a supervised one in another. 
Other times, the actual ML algorithm is 
hybridized. Some examples of these ML 
algorithms are reinforcement learning, 
transfer learning, Generative adversial 
networks (GANs), semi-supervised 
learning, and so forth (see box on 
page 8 for more information about 
reinforcement learning).

To understand the nuts and bolts 
of ML, we need to understand the 
basic difference between the two 
approaches of supervision and how 
they can be leveraged to obtain the 
answers that we are looking for. A list 
of definitions of terms used throughout 
this document is found on page 10. In 
supervised ML, a user inputs a training 
dataset (sometimes called a “labelled 
training dataset”) that identifies 
correct answers and incorrect answers 
to help the algorithm learn relevant 
patterns in the data. These patterns 
can be identified by categories. For 
example, the machine can learn that 
data A are images of cats and data B are 
images of chairs because the algorithm 
has been trained by a user that certain 
characteristics—whiskers and paws—
indicate a cat and not a chair. Thus 
instead of a dataset being comprised 

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE
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by anonymous data A and data B, 
thanks to ML we now know that data 
A and B are different (cats and chairs, 
respectively). In extending this concept 
to DRM, consider the identification of 
rooftops in a satellite image. The ML 
algorithm will need a training dataset 
that has both rooftops and non-rooftop 
areas, such as trees, identified and 
labelled. The ML algorithm will learn 
what characteristics are indicative of a 
rooftop from that training dataset and 
can then classify the rest of the image 
based on the training dataset. 

In unsupervised ML algorithm, the 
algorithm uses statistical methods, like 
clustering analysis or neural networks, 
to attempt to group data with similar 
characteristics together, such as roofs 
of the same color or texture in the DRM 
example above. It is then up to the user 
to add semantic information (labels) to 
the data-driven results. In unsupervised 
ML, many other separations in the data 
might be discovered; not just group (A) 
and (B), but possibly (C), (D), and (E), 
etc. Therefore, this is also understood 
as an exploratory tool in which the 
user does not always know what can 
be learned from the ML algorithm. If 
we extend the analogy of a function 
here as well, if y = f(x), in unsupervised 

ML algorithms, we only input (x) and 
the ML algorithm applies a series of 
statistical methods to identify the best-
fitting function (f) that splits the data 
into a result (y). This learned function 
can sometimes be applied to completely 
different datasets. 

For example: There are three kinds of 
datasets required for ML algorithms; 
training, validation, and testing. Training 
datasets are used in the beginning stages 
to train the model to recognize features 
and patterns in the data. Validation 
datasets are used to determine the best 
model parameters and are used before 
the testing set. Testing datasets are 
kept separately from the model while 
its training so that it can be used after 
training to test the accuracy. 

In order to identify patterns in data, 
individual pixels that make up the 
image are analyzed in a type of analysis 
called “image analysis”. Object-based 
image analysis (OBIA), which has also 
proven its usefulness over the years 
as well, organizes neighboring pixels 
into meaningful groups. In both types 
of analyses a pixel can be described by 
color, texture, or other raster geographic 
information system (GIS) information 
such as elevation or temperature.  0  

REINFORCEMENT LEARNING

Reinforcement learning is a type of machine learning that 
takes a page from behavioral psychology. Simply put, the 
training dataset and rules in an ML algorithm are not binary 
(yes or no) decisions, but rather they attempt to achieve a 
balance between data exploration and accuracy. In other 
words, the model is allowed to make mistakes and explore the 
data within certain parameters. 

A famous example of a hybrid system is Google’s DeepMind 
AI project, which relies on reinforcement learning—in this 
case, a hybridized artificial neural network combined with 
supervised learning methods. Bought by Google in 2014, 
DeepMind has been on the forefront of AI advancement and 
even developed programs that can defeat humans at complex 
games like Go.

https://www.technologyreview.com/s/533741/best-of-2014-googles-
secretive-deepmind-startup-unveils-a-neural-turing-machine/
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In OBIA, samples can also be described 
by their area, shape, or orientation. 

Although recent developments are 
delivering very powerful ML algorithms, 
it is important to remember that a 
model is only as good as the data used 
to train it. First, the categories of data 
should be distinguishable according to 
the features provided. Also, the training 
dataset should be representative of the 
variability in features of the specific 
group of data. That is to say, if the 
target class is a building, the training 
data should include examples of the 
variety of building appearances. 

It is important to note that training sets 
for ML algorithms can be geographically 
biased, and it is important to ensure 
geographic diversity for the training 
set. For example, buildings tend to 
appear differently in European cities 
than African cities. If an ML algorithm is 
trained using examples from one region, 
it will likely perform worse on data 
from a different region where objects 
appear differently. Such diversity 
should be taken into account when 
putting together the training dataset. 
(See table on page 10 for more details.) 

Once you identify the characteristics/
features of data that best explain the 
data (explanatory variables), you can 
then use both types of methods to 
identify relevant patterns.

On top of different types of ML 
algorithms, there are also a fair 
amount of ambiguous terms like 
artificial intelligence, machine learning, 
big data, and deep learning, among 
others. These have become somewhat 
interchangeable in the vernacular of 
development agencies, technology 
service vendors, and mainstream media 
alike. This document attempts to 
demystify these terms. 

Photo Credit: World Bank
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Despite the plethora of available ML 
algorithms and the even greater number 
of methods in libraries that can be 
developed into customized models, the 
general process for an ML algorithm is 
the same. 

A thorough list of references on ML is 
available in section 8: References and 
Resources.

2.2 MACHINE LEARNING 
TERMINOLOGY Term Used in 

Document Alternative Terms Definition

Feature Attribute, 
variables, 
dimensions

Characteristics used to describe 
the data samples and predict the 
output; not to be confused with 
a “feature” in GIS, which refers to 
a physical “object” with specific 
attributes

Output 
variable

Predicted variable, 
target variable

Phenomenon you want the model 
to predict; the desired output of 
the model

Sample Reference data Set of samples with known 
features and class labels. This set 
of labelled samples should be 
divided into training, validation, 
and testing.

Training 
dataset

Labelled samples used to train 
the model, i.e., learn the relevant 
patterns in the features which 
are relevant to predict the output 
variable

Validation 
dataset

Cross-validation 
set

Labelled samples to validate the 
model before the testing set; used 
to help determine the best model 
parameters

Testing dataset A set of labelled “unseen” training 
samples which are used to 
determine model accuracy; cannot 
be included in the model training

Cluster Group of samples which are 
grouped together based on 
similarities identified by an 
unsupervised algorithm

Class Group, bin, 
categories

A class, or group, is the result of 
the splitting of a dataset into two 
or more groups of data that share 
some common characteristic. The 
term “class” is most commonly 
used in supervised ML algorithms, 
for example in satellite remote 
sensing, where features like 
“rooftops” may be split into class 
A, and features like “vegetation” 
may be split in class B and so forth. 
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2.3 SUPERVISED MACHINE 
LEARNING: CLASSIFICATION 
AND REGRESSION
Supervised learning can be divided 
into classification and regression 
problems. In classification, the inten-
ded output is a semantic label or 
class. Tighter sentence: For instance in 
flood mapping classification problems 
would label each pixel in an image as 
“flooded” or “not flooded (see case 
study 6.4.1 Flood Mapping). Similarly, 
cyclone damage assessments may 
classify buildings suffering from “mild,” 
“medium,” or “severe” damage (see 
case study 6.4.3 Cyclone Damage 
Assessment). Regression problems aim 
to predict a continuous variable, such 
as predicting the poverty rate for 
each administrative unit based on 
characteristics such as type of buildings, 

amount of green space, population 
density, or other traits. (See case study 
6.2.1. Sri Lanka Poverty Mapping). 

There are many different types of 
supervised ML algorithms, which 
sometimes have fundamentally different 
architectures. The most common class-
ification algorithm is logistic regression, 
while the most common regression 
algorithm is linear regression. Some 
of the most well-known classification 
algorithms are random forests, gradient 
boosting, support vector machines 
(SVMs), naive, and gradient boosting 
Bayes networks (see box below). 
Random forests and SVMs can also be 
adapted to regression problems.

Name Description Advantages Disadvantages

Random forest A group of decision trees. 
Each tree is a hierarchy 
of decisions which divide 
samples into two groups 
depending on the value of a 
single feature at a time

• Less susceptible to noise
• Can handle large numbers 

of training samples

• A decision tree’s disadvantage is 
high variance in its results, however 
random forests solve this problem 
by averaging many trees. The 
drawback: as you average many 
decision trees, it might be hard to 
interpret the results

• Slower than other methods in the 
testing phase

Gradient boosting Similar to random forests, 
but trains each tree 
sequentially. The samples 
which have the highest 
uncertainty according to 
the results of the previous 
iteration are prioritized

• Studies suggest it can 
be more accurate than 
random forests

• It is more challenging to train the 
algorithm

Support vector 
machine

Uses kernel functions (a 
class of algorithms used 
for pattern analysis) to 
describe the non linear 
differences between 
training samples

• More suitable for  
situations with limited 
reference points

• Can easily handle large 
numbers of input features

• Can learn non-linear 
relations between features

• Computational complexity when 
there is a large training set

• Sensitive to noisy data

Naive Bayes A graphical model 
describing the probabilistic 
relations between feature 
values and class labels 

• Simple to implement
• Scales easily
• Feature importance is easy 

to interpret

• Assumes all features to be 
independent from each other, which 
is often not the case in real-world 
applications
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2.4 UNSUPERVISED MACHINE 
LEARNING 

Name Description Advantages Disadvantages

K-means clustering A clustering technique 
which iteratively calculates 
the “average value” (e.g., 
centroid) of each cluster and 
assigns each sample to the 
nearest cluster

• Simple implementation, 
performs well

• Distance metric can be 
defined by the user

• User must define number of 
classes

Principal component 
analysis

Transforms the data to 
features which maximize 
the variance (differences) 
between samples

• Can be used to retain 
the relevant information 
while decreasing data 
dimensionality

• Resulting features are 
difficult to interpret

 t-SNE Non linear data 
dimensionality reduction 
technique suitable for 
visualization purposes

• Helps understand patterns by 
visualizing similar groups

• Captures complex similarities

• Sensitive to hyperparameters
• Computational complexity

In unsupervised ML, the machine takes 
an input dataset and applies a series of 
mathematical and statistical models 
to identify patterns, without the user 
providing labelled training data. One 
of the most common applications is 
clustering, where samples are grouped 
based on similarity. Other applications 
include dimensionality reduction and  
anomaly detection to reduce variance 
in a dataset and filter it for outliers. 

Unsupervised methods are purely 
driven by the patterns in the data. The 
patterns are based on the statistical 
characteristics of the input samples. 
This means that the user doesn’t 
need to provide labelled training sets 
(which can be costly and difficult to 

put together), but also means that the 
patterns identified by the ML algorithm 
may or may not be useful for the user. 
Due to this uncertainty and the difficulty 
of understanding the performance 
of unsupervised ML algorithms, they 
are often used for data discovery and 
exploration. 

Often, the results of unsupervised ML 
algorithms are fed into supervised ML 
algorithms, where human input and 
experience can help a dataset reach 
its targeted accuracy more quickly. 
There are three types of unsupervised 
machine learning, as described in the 
box below: K-means clustering, principal 
component analysis and t-SNE.

cluster icon
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2.5 DEEP LEARNING
Artificial neural networks are also 
commonly referred to as deep learning. 
Neural nets, as they are called for short, 
work with several hidden layers that are 
nested between the inputs and outputs 
and are connected to each other through 
connections that resemble neurons 
in a brain. These neurons all have 
mathematical formulas that optimize 
the accuracy of the categorization, 
most notably using a method called 
backpropagation. Backpropagation is 
short for the backwards propagation of 
errors. It is a method used to calculate 
the gradients between optimal values 
(weights) in the “neurons”. The term 
“deep learning” comes from the fact 
that these hidden layers can be nested 
upon other hidden layers to some depth, 
but has nothing to do with the actual 
“depth” of the content. In other words, 
deep learning methods can be just as 
shallow as other ML methods. Deep 
learning can be applied to supervised 
and unsupervised ML tasks. 

Recently, deep learning has gained 
much popularity as it is capable of 
obtaining unprecedented accuracies 
for large ML algorithm problems. 
Convolutional neural networks were 
developed for image classification, 

making them useful for tasks involving 
remotely sensed imagery and/or 
other spatial data. The more recent 
fully convolutional neural networks 
(FCNs) are especially relevant for 
spatial applications, as they are 
more efficient for processing large 
scenes. New networks and models 
are continuously being developed for 
various applications, many of which 
are available as open-source libraries. 
However, they require much more 
training data and have significantly 
higher computational requirements 
than the other methods. It is therefore 
important to consider the complexity 
and available resources of the 
classification problem when choosing a 
suitable algorithm. 

In fact, supervised decision tree 
algorithms can be visualized and 
explained in terms of a two-dimensional 
neural network. While adding nodes, 
or “decisions,” to a decision makes it 
deeper (more hierarchical decisions), 
the power of deep learning is that it 
can apply a number of hidden layers of 
nodes (decisions) that make the neural 
network wider and more intricate, 
effectively adding more and more 
dimensions/layers.

13 MACHINE LEARNING FOR DISASTER RISK MANAGEMENT



3. APPLICATIONS AND OUTLINE 
OF A MACHINE LEARNING PROJECT

Photo Credit: World Bank
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3.1 DRM APPLICATIONS 
OF MACHINE LEARNING

3. APPLICATIONS AND OUTLINE 
OF A MACHINE LEARNING PROJECT

As ML approaches are proliferating 
in all fields of expertise, DRM is no 
exception—new applications are being 
developed every day. They are developed 
to improve the different components 
of risk modelling such as exposure, 
vulnerability, hazard, and risks, but also 
for prioritization of resources during 
disaster response and reconstruction.

A number of early applications have 
been looking at better understanding 
exposure to disasters from the physical 
side (see case study 6.1 Exposure and 
Physical Vulnerability) as well as from 
the socioeconomic side (see case study 
6.2 Social Exposure and Vulnerability). 
These types of applications have relied 
mainly on the analysis of satellite 
imagery characteristics (in the visible 
wavelengths of the electromagnetic 
spectrum as well as radar and LiDAR), 
often coupled with the addition of 
georeferenced census data. Newer 
applications are starting to also 
leverage computer vision approaches to 
identify vulnerabilities from street view 
images (see case study 6.1.1 Guatemala 
City Building Earthquake Vulnerability). 
In the near future, by combining all 
these approaches and data sources, we 
can imagine having a detailed exposure 
database at scale that can be updated 
any time new imagery is available.

The traditional modelling of hazards, 
such as earthquakes, wildfires, and 
weather forecasts, is also being 
augmented by ML approaches. This 
application uses time coded data from 
hundreds or thousands of sensors 

(whether physical, like weather stations
or earthquake stations, or remote, such
as satellites) and other geophysical 
characteristics to predict hazard output
(see case study 6.4.3 Wildfire Prediction).

Another approach involves looking 
at the impact of the hazard on the 
exposure data, or in other words the 
risk. To do so, data is gathered on the 
exposure (see section above), and the 
damage prediction algorithm is trained 
using the impact of past events. Next, 
it infers and  identifies the key aspects 
of exposure that have an influence on 
the disaster impact (see case studies 
6.3.1 and 6.3.2 Flood Damage Prediction 
and Machine Learning-Powered Seismic 
Resilience for San Francisco). Once 
trained, those algorithms can be 
used to predict damage in other cities  
or countries. 

Post-disaster event mapping and 
damage assessment are also emerging 
as key applications. Although difficult 
using optical data from satellites, some 
approaches are using higher-resolution 
optical imagery from Unmanned Aerial 
Vehicles (UAVs) (see case study 6.4.2 
Cyclone Damage Assessment), while 
others use more complex data that are 
difficult for humans to interpret but are 
simple for machines to sift through to 
identify new relations, like radar data 
(see case studies 6.4.1 Flood Extent 
Mapping and 6.4.2 Cyclone Damage 
Assessment).

Other new applications involve pri-
oritizing resources during response 

or recovery phases. For instance, 
prioritization of building inspections 
using previous building inspection 
records and their outcomes, social 
media mining for response awareness 
and resource prioritization,1 monitoring 
of rebuilding and recovery activities 
using computer vision or on-site 
pictures to control quality, supporting 
insurance claims using computer vision 
to identify crop or building damage 
from pictures, and many others.

1https://www.floodtags.com/
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3.2 OUTLINE OF A MACHINE LEARNING PROJECT
This section provides a brief overview of the general steps which must be followed to set up an ML project. The next section 
will describe how to prepare the inputs for the problem and evaluate the quality of the ML algorithm results and required 
project resources in more detail.

1. Project goals are defined: What do we want the ML algorithm to predict or classify? The 
objective of the DRM project should be translated to the output variable that is targeted. 
For example, ML can support a poverty mapping project by estimating a poverty index (see 
case studies 6.2.1 and 6.2.3). Building vulnerability can be translated into classifying the 
type of roof material used. More examples of how DRM objectives can be translated into 
ML projects are given in the case study section below. 

2. Data/imagery sources: This obviously also depends on the objective. ML algorithms 
have been used for decades on satellite remote sensing imagery of many different kinds 
and resolutions. Currently, work in the DRM sector often involves using high-resolution 
(sub-meter spatial accuracy to 10 m or so) panchromatic and multispectral imagery from  
satellites, drones, and airplanes. However, as discussed above, ML algorithms can be  
applied to data of all kinds, so big data sources that are actively mined can come from  
household surveys (see case study 6.3.1 Flood Damage Prediction), census data (see 
case study 6.2.3 Stanford Poverty Study), social media (see case study 6.4.1 Flood Extent 
Mapping), tweets, and cell phone locations, to name a few.

3. Training/validation data collection: Labelled samples or reference data are required to 
train the model and validate the ML algorithm outputs. Projects using high-resolution 
satellite imagery often manually create this data. If the goal is to map roofs in satellite 
imagery, then a “training dataset” is manually drawn so that there is an input dataset 
for the ML algorithm that teaches it what roofs look like. Crowdsourcing can be used to 
speed up this process (see case study 6.4.2 Cyclone Damage Assessment). Field data are 
another important source of reference data, such as using household surveys to validate 
the poverty level (see case study 6.2.3 Stanford Poverty Study). The collection of these 
labelled samples is often the most expensive part of ML projects.

4. Exploration of dataset: Exploratory data analysis is an important step, as it helps 
determine which algorithm to use and the best data to include. This analysis also clarifies 
which input variables are correlated with each other, what is most closely related with the 
output variable, the distributions of variables, or even whether you can combine/transform 
input variables. This step also cleans the data of outliers, which could otherwise skew the 
results dramatically by altering the variance in the data in disproportionate ways. 
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5. Choice of algorithm: When choosing an algorithm, there is no silver bullet or one-size-
fits-all solution. The best way to decide is to analyze which algorithms have been used 
to tackle similar problems in the past. The choice of algorithm may also depend on the 
size of the training set, number of features, and computational resources available. 
 
Sometimes, multiple models are applied and the best performing one is selected; 
however, it is important to understand and compare models that have been tuned 
optimally so that the comparison is actually assessing the model effectiveness and is not 
biased by the parametrization behind it. If the review or application of various models is 
too time consuming, then the support of specialized experts should be sought in order  
to start on the right foot. For example, Task Team Leaders (project managers) who have 
no background in ML, statistics, or computer science should seek the advice of data 
science experts at the beginning of the project.

6. Developing the code and running the algorithm: Some ML algorithms are 
already developed in a programming language and available in user interfaces, 
such as the image classification algorithms available through the ENVI software 
for remote sensing, through the Google Earth Engine, or DigitalGlobe online 
platform GBDX for cloud-computing remote sensing image classification. There 
are a number of readily available ML algorithms inside remote sensing and GIS 
software packages, some of which are free—like the GRASS GIS plug in for QGIS.  
 
In addition, any number of ML algorithms from open or proprietary libraries 
can be combined and customized to achieve any project’s goals. In custom 
applications, ML algorithms can be programmed in a variety of programming 
languages and tools that range from R, Matlab, and ESRI arcPy to GDAL and GRASS. 
Increasingly open-source platforms like TensorFlow2 have matured and remote 
sensing-specific ML tools like Mapbox’s RoboSat are openly available on Github.3 
 
On top of that, a number of customized ML services are available on cloud computing 
platforms like AWS, Azure, and Google Cloud services. In fact, some of the WB projects 
showcased in this document have been run  on these platforms.

7. Validation, reinforcement, and re-running: Any ML algorithm produces an output  
that needs to be validated for accuracy. This is usually achieved by comparing the output 
data to a validation dataset that is considered the “truth,” or accurate within a range 
that is acceptable for the project’s goals. For example, a map of all the roofs in an image 
drawn by human photo interpreters can be compared to the ML algorithm output to 
assess its accuracy. Modifying the training dataset and parameters needed to run the 
algorithm might yield more accurate results, so the intermediate results are used to 
rerun the ML algorithm with the goal of increasing accuracy. Section 4.2 discusses how 
to assess the model’s accuracy in more detail.

8. Final data output: The final data output is achieved once the accuracy of the output 
dataset is deemed adequate for the goal of the project. The final output accuracy needed 
can differ greatly, and there’s no quick rule of thumb. A final accuracy of 50%, for example, 
means that the model is no better than random chance at predicting the variable of 
interest, which means the model is useless. The concept of accuracy is different and 
possibly ill posed when talking about unsupervised ML algorithms, where the goal might 
be data discovery. However, in unsupervised cases, something can be learned from output 
data even if the ML algorithm does not give an accurate classification or explanation of 
the final variable.

abstract data 
model icon

2https://www.tensorflow.org
3https://github.com/mapbox/robosat
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4. CONSIDERATIONS FOR IMPLEMENTING 
A MACHINE LEARNING PROJECT

Photo Credit: World Bank
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4. CONSIDERATIONS FOR IMPLEMENTING 
A MACHINE LEARNING PROJECT

There are several issues that need to be considered when planning an ML project. We have divided these into the subsections 
below: selecting suitable input data; evaluating model output; expertise, time, infrastructure, and costs; and ethics: privacy 
and bias considerations.

Once the project goal is defined, the 
first step is to do a quick data inventory. 
Which data do I have that might help 
me predict my output variable? If I 
need to find additional data, which 
characteristics should I take into account 
when selecting suitable input data? It 
is good to think about the relevance 
of the dataset for your proposed goal 
and how different datasets provide 
different pieces of information about 
the problem. A number of open 
data sources are available, such as 
NASA and ESA satellite imagery, and 
derived geospatial products, such as 
OpenStreetMap, OpenAerialMap, World 
Bank Open Data, UNdata, the GEOSS 
portal, and the Humanitarian Data 
Exchange. 

In the age of “big data,” more is not 
always better. ML can combine many 
different types of data, but adding 
irrelevant data may incur additional 
costs without improving the model 
predictions. At the same time, 
ML cannot magically obtain good 
predictions if the input data does not 
adequately relate to the targeted 
output. In general, it is good to check 
which similar data studies or projects 
that have been used. To help select 
relevant data, the following section 
provides an overview of some of the 
different data characteristics that can 
be taken into account to guide the 
selection of suitable input data.

4.1 SELECTING SUITABLE  
INPUT DATA

Direct and indirect relations, and 
data best left out
The input data can be directly, 
indirectly, or not related to the output 
goal. One example  of direct relations 
is identifying buildings in submeter 
satellite imagery. Here, roofs are visible 
in the satellite imagery, and one can 
easily assume that there is generally a 
building below a roof.
 
An indirect relation means that the 
information captured by the input data  
is somehow related to the output goal.  
For example, one can try to identify 
informal areas or poverty from 
satellite imagery. Buildings in informal 
settlements or poorer neighborhoods 
generally look different (low rise, 
corrugated iron roofs, very narrow 
footpaths) from buildings in planned 

abstract data
illustration
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Spectral resolution has to do with which 
wavelengths of the electromagnetic 
spectrum (which “colors,” when talking 
about the visible wavelengths) are 
observed by the imagery. Many cameras 
capture the same part of the spectrum 
as the human eye, often referred to as 
RGB, or Red-Green-Blue. Other sensors 
can observe parts of the spectrum 
which the human eye cannot see, 
but which can be very relevant and 
useful for a wide range of applications. 
For example, multispectral imagery 
containing Near-Infrared reflectance 
(NIR) is useful for discerning vegetation, 
and hyperspectral imagery is often used 
to identify different types of minerals 
for geological applications. 

Also important is the spatial resolution. 
This defines the real-world size of 
each pixel in the image on the ground. 
A higher resolution means that the 
image pixel represents a smaller area 
on the ground. This allows smaller 
objects to be identified in the images. 
The resolution should be high enough 
to identify the object that is needed. 
However, it should be taken into 
account that higher resolution imagery 
also means larger file sizes and more 
computational complexity. Depending 
on the application of the ML project 
and unit of analysis, it may not always 
be necessary to select the data with the 
highest spatial resolution (or temporal 
or spectral, for that matter).

areas (often larger, more regularly 
spaced, gridded road networks). See 
case study 6.2.2. Informal Settlement 
Mapping for an overview of visual 
differences between formal and 
informal areas. However, it is important 
to remember that the physical 
representation of the buildings in 
the imagery does not actually have 
a direct link to the income of the 
building’s inhabitants. The buildings in 
the imagery (input data) are therefore 
indirectly related to the poverty index 
(goal). Complex ML algorithms are 
capable of combining many sources of 
input data which are indirectly related 
to the objective to create reasonable 
predictions. However, it is important 
to remember that these relations are 
not always causal, but may simply 
show a correlation. Especially when 
predicting socioeconomic variables, the 
relationships between the input data 
and targeted output may vary strongly 
from one location to another. 

Finally, some data is best left out 
of the analysis, even though it may 
be available. Data which are weakly 
related or inaccurate (i.e., “noisy” data) 
should also be left out or otherwise 
emphasized by the model. These 
issues can all be determined in the 
exploratory data analysis phase. Each 
additional type of input data makes 
the ML model more complex, so, adding 
irrelevant or low-quality data introduces 
unnecessary data-processing costs and 
may even lower the quality of the output 
predictions.

Image characteristics
In more traditional Earth observation or 
remote sensing applications, there are a 
number of image characteristics which 
are relevant when selecting datasets 
to use. Temporal resolution indicates 
the frequency with which images are 
captured over the same area. The timing 
of the data collected may also influence 
its suitability. For example, imagery 
collected during the winter or dry season 
may not be suitable for agricultural 
monitoring applications.

Photo Credit: World Bank
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Other data
Sometimes, the output variable may  
be predicted more accurately with the 
support of additional data sources. 
Objects in urban settings often have 
many different colors and textures, 
so the addition of elevation or LiDAR 
information may be quite useful. Radar 
imagery can be useful for identifying 
changes in surfaces or obtaining 
data despite cloudy conditions. 
Socioeconomic studies may include 
census surveys aggregated at the 
administrative unit level. Terrestrial 
or street-view imagery can be used 
to provide information which cannot 
be seen from above, such as building 
wall material. Recently, social media 
information is also included, such 
as using tweets or crowdsourced 
geotagged images to identify flooded 
areas (see case study 6.4.1 Flood Extent 
Mapping). Tabular data, such as results 
from household surveys, can be used 
for assessing flood damage (see case 
study 6.3.1. Flood Damage Prediction). 
Again, a good starting point is to look 
at similar projects and find out which 
data they have used.

When including other data, it is 
important to link the unit of analysis. 
ML algorithms can be applied to pixels, 
vectors (such as building footprints), or 
samples. When integrating data from 
different sources, they should all be 
linked back to the same unit of analysis 
if we wish to use them in the same ML 
algorithm. For example, census data 
per administrative unit can be linked to 

a vector file showing the administrative 
boundaries, giving the census data 
spatial dimensions, and enabling it to 
be combined with imagery.

When an ML algorithm involves many 
features, unexpected patterns can end 
up being the most important. Therefore, 
experimenting with combining multiple 
features can be one of the most crucial 
steps of feature engineering.

IMAGE CHARACTERISTICS

Temporal resolution: How often is the dataset acquired of the same area?
Spectral resolution: Which parts of the electromagnetic spectrum (essentially, which “colors”) are captured?
Spatial resolution: What is the actual size of each pixel on the ground?
Geographic coverage: What is the area over which the imagery is acquired?
Temporal coverage: What is the total timespan of the archive of the imagery/data available? 
Context: Certain types of sensors are only adequate within certain physical contexts. For example, radar data 
that is valuable for building detection can be problematic in stony, hilly areas.

4.2 EVALUATING MODEL 
OUTPUT
Training, validation, and testing data
The division of the data into training, 
validation, and testing sets is key to 
evaluating the performance of an ML 
algorithm. The training set is used to 
teach the model to distinguish the 
classes we wish to predict. Each ML 
algorithm requires a number of model 
parameters to be set. By checking the 
accuracy of the trained model on the 
validation set, we can compare the 
different model parameter settings and 
choose the best ones for our particular 
problem. The third group is the testing 
set. This set should not be touched 
during model development and is only 
used at the end to check the accuracy of 
the final model output. In some cases, 
the testing dataset is actually a new 
dataset, such as in a case where you want 
to apply a previously developed model to  
a new region.
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There is no specific rule regarding 
how to divide the reference data into 
these training, validation, and testing 
datasets. One rule of thumb is to 
randomly allocate 50%, 25%, and 25% 
of the data to each set, respectively. The 
exact ratios may differ. Benchmarks to 
compare algorithms often require users 
to submit their model results for a set 
of data for which they are not given the 
reference labels. 

Not only the quantity, but also the 
heterogeneity of the training samples 
are important for ML algorithms. 
However, a tipping point can be reached 
where too much data heterogeneity 
leads to unpredictable results. Likewise, 
a feature in one geographic region 
can resemble a completely different 
feature in another geographic context, 
so it’s often necessary to have different 
models for different areas, even when 
the same output results are being 
targeted. Flood damage prediction 
models have been shown to obtain 
higher accuracies when trained using 
flood events of various magnitudes and 
geographical locations (see case study 
6.3.1. Flood Damage Prediction). 

Deep learning models aiming to 
assess cyclone damage to buildings 
had a significantly lower accuracy 
when applied to images of a different 
geographical region (see case study 
6.4.2. Cyclone Damage Assessment). 
Ideally, similar quantities of samples 
should be available for the different 
classes. “Negative” examples are also 
important to include. For example, 
when training a classifier to recognize 
roofs, it can be essential to also 
collect a second dataset that contains 
“everything but roofs” so that the 
ML algorithm can learn with higher 
accuracy to separate roofs from 
everything else in the imagery. 

Accuracy metrics
The accuracy of an ML algorithm can 
be described by a number of different 
quality metrics. For classification 

problems, a confusion or error matrix 
can be used to show the relationship 
between the number of samples per 
class in the reference data and how 
they are classified by the output data. 
In general, the overall accuracy of an 
algorithm is calculated by dividing the 
total number of correctly classified 
samples by the total number of samples.

An algorithm’s precision (i.e., correct-
ness or user’s accuracy) is the number 
of true positives divided by the sum of 
true positives and false positives per 
class. This describes the probability 
that a pixel is classified as part of the 
correct class. An algorithm’s recall (i.e.,  
completeness or producer’s accuracy) 
is the number of true positives divided 
by the sum of true positives and false 
negatives. This number tells us the 
probability of a pixel being correctly 
classified. Both are important because 
they can indicate whether the class is 
being overpredicted or underpredicted. 
Regression problems may often use 
the mean average error or root mean 
square error as accuracy metrics.

In some cases, it is not possible to obtain 
a quantitative error metric for the 
model. The “true” value may simply not 
exist, such as for unsupervised clustering 
ML algorithms. Visual interpretation 
can be used to evaluate the output of 
clustering methods to decide whether 
the algorithm generates meaningful 
clusters.

It is more common, however, that the 
true value is simply not known, and 
so alternative data sources may be 
used to validate a model. For example, 
geotagged crowdsourced images can 
be used to validate the flood extent 
an ML algorithm generated from 
satellite imagery (see case study 6.4.1.  
Flood Extent Mapping). 
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Interpreting model results
As a user, you can also get an idea of 
what is happening in the model by 
comparing the accuracies that are 
obtained for the training, validation, 
and testing datasets (see table on page 
24). If the training error is high, then 
consider getting additional data. This 
could mean obtaining more training 
samples or, perhaps, a different type 
of data which is more capable of 
distinguishing between the different 
classes. You can also try a different 
classification algorithm or use the 
validation set to select the best model 
parameters. 

If the training error is low, but the 
validation error is high, you could be 
overfitting the model. Overfitting 
happens when the model is too 
complex for the input training data. 
If limited training data are available, 
a very complex model might actually 
be learning which class should be 
assigned to each individual sample 
rather than learning the underlying 
patterns which distinguish the different 
classes. To avoid overfitting, try getting 
more training data. You can do this by 
collecting more reference data from 
external sources or introducing slight 
variations into the training data you 
already have. Deep learning algorithms, 
for example, may rotate or flip input 

samples to easily increase the variation 
in training data. Another option is 
to reduce the model complexity by 
changing the model parameters.

It’s important to note that some ML 
algorithms, especially deep learning 
ones, do not give us an idea of 
which input variables are important, 
or which relationships between 
variables led to a specific outcome. 
On the contrary, when using ordinary 
least squares linear regression or 
decision trees, for example, it is clear 
which features best explain a specific 
output of the model. 

If the training and validation errors 
are low, but the testing error is high, 
then there may be a bias in the training 
samples. That is to say that the training 
samples are not representative of 
the testing dataset. This may be the 
case when applying a model which 
has been developed for one project 
to a different project. For example, a 
building detector in the Netherlands 
may not function well for a city in 
Africa because the buildings may look 
quite different. If this is the case, then 
consider obtaining more representative 
training data, or start the process 
from scratch by dividing your new 
data into new training, validation, 
and testing sets. 
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It should be emphasized that the overview in the table above is a simplification of the process. Although it gives a general 
overview of the main issues, the possible problems and solutions are, of course, much more nuanced than the table 
demonstrates. However, as a nonexpert, it is important to remember that the testing dataset which is used to describe 
the model accuracy should not be used to train the model. Having insight to the accuracies of the training, validation, and 
testing sets can help understand whether the model is accurate and which steps can be taken to improve it.

Scenario: 
High training error

Problem 
Initial model isn’t suitable

Possible solution
• Get more input data (more 

samples or complementary 
data)

• Change the model or model 
parameters (for deep learning, 
train longer)

Scenario: 
Low training error, but high 

validation error

Problem 
Overfitting

Possible solution
• Obtain more training data
• Reduce model complexity

Scenario: 
Low training and validation 
errors, but high testing error

Problem 
Training bias

Possible solution
• Obtain more representative 

training data
• Retrain model (if applying to a 

new project)
• Sometimes necessary to use an 

entirely different model.

A simplified overview of how to use training, validation, and testing errors to understand machine learning outputs.
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Training dataset: Does the training data already exist? Or does it have to be created manually? 
How much training data is needed for the algorithm to be trained? In most projects, particularly 
in areas where the data may be scarce, the creation of a required representative training dataset 
may be one of the main drivers of cost for the project, as it can involve intense manual labor. In 
other cases, it may be readily available. This can easily be the most important and expensive part 
of the project, as the model, and any result that comes from it, is inherently tied to the quality 
of the data that is input. An old adage goes: “garbage in, garbage out.” In other words, a model 
is only as good as its input data. Creating a relational database of the input features with their 
labels will also take time, and depending on several factors, those databases could simply be a 
file on a computer or a networked, cloud-based item.
 
 
 
Imagery: When using imagery, can you rely on openly available imagery? Or do you need 
commercial higher resolution imagery? The latter case may involve buying large, expensive 
swaths of imagery, or at least paying for on-demand access to the imagery to run the algorithm 
within platforms like GDBX, Google Earth Engine, Descartes Lab, Orbital Insight, or Airbus 
OneAtlas. Resources such as GloVIS of USGS/NASA and EO Browser of the European Space 
Agency have been and are instrumental in accessing earth observation data, but they still need 
to be downloaded.
 
 
 
 
 
Algorithm: Do you need a new algorithm, or can an existing one be tweaked and trained 
to fit your goals? More and more satellite imagery segmentation and recognition may be 
available out of the box, whether in an open-source format, or for a fee—but newer and 
more advanced applications may require more extensive work to develop new algorithms or 
combine existing ones. The time it takes to tune an algorithm’s parameters varies by case. 
 

 
 
Processing resources: Depending on the amount of data, the size of the area of interest, the 
type of data, and the algorithm, the resources necessary to process a project can vary. Some 
can run on a laptop or desktop computer with a good graphics processing unit (GPU), while 
others require the storage and computing capacity of a server. Others benefit from deployment 
in large, pay-per-use cloud computing services. 

Resources such as Google Earth Engine have pioneered and fundamentally changed the way that 
the processing of Earth imagery can be done by employing the power of the cloud, bypassing 
many time-consuming and expensive steps in data downloading, archiving, preprocessing, and 
processing, not to mention keeping archives of imagery updated for recurring tasks.

The hardware and software needs of projects using ML algorithms on big data vary widely. A small project or prototype can 
be envisioned using free software, minimal coding, and WB information technology (IT) infrastructure, but larger and more 
articulate projects require considerable expertise and IT infrastructure. Projects that require more expertise in coding, parameter 
tuning, etc., will inevitably incur larger costs and time frames. Several factors may impact the cost of an ML project.

4.3 EXPERTISE, TIME, INFRASTRUCTURE AND COSTS
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4.4 ETHICS: PRIVACY AND BIAS CONSIDERATIONS

In terms of privacy, ML poses threats at 
different levels, first due to the amount 
and details of the data handled that 
can be private or high resolution, and 
also due to the predictive power of 
the ML algorithm applied to those 
large amounts of data. For instance, 
ML can identify individuals better than 
humans can and can do it at scale. But 
more unexpectedly, they can also reveal 
things about people that they may not 
know, or that their immediate circles 
may not know.

In everyday life, large amounts of 
data are potentially mined and used 
according to contracts and conditions 
that we enter when using personal 
devices such as smartphones, with their 
multitude of sensors, or participating 
in online activities—be it simply 
e-mail or using social networks. ML 
methods are used by companies and 
organizations to manipulate our user 
data and provide additional services. 
For example, our social network feed 
learns from our activities what to show 
next and which ads we are most likely 
to click on, and our favorite online 
retailer learns from our tastes to offer 
us other items we may like. In this 
sense, privacy is a data concern and a 
sharing concern which simply extends 
to ML because it uses data and is often 

applied online in cloud environments. 
Specifically in DRM, ML can pose 
privacy risks as the volume of data 
increases and the spatial resolution 
of imagery used, such as drone 
data, increases. It is easy to detect 
individuals in drone imagery. In street-
level imagery, faces are discernible, as 
well as potential building attributes 
that may pose security risks. Again, 
the discussion here is more about 
the privacy concerns of acquiring, 
storing, and sharing personal data 
than ML, per se. Certainly, suitable 
privacy guidelines should be followed 
according to the type of input data 
utilized. For example, the ethical usage 
of drones for development applications 
is discussed in a separate World Bank 
Group guidance note.

For these reasons, as DRM projects 
employ ML to create and use data 
from remote sensing as well as other 
sources, it is important to note that 
this data can hold private information 
and, therefore, should be adequately 
dealt with. In addition, the concept of 
privacy varies widely over regions and 
social groups, so global best practices 
and standards should always be 
supplemented according to the specific 
project in question.

PRIVACY
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All data has biases. All models are 
incomplete, as they are approximate 
representations of the real world. Paying 
attention to these biases is necessary 
for both improving ML approaches 
and using their results responsibly. 
Even significant societal biases like 
racism, sexism, or economic bias have 
been shown to affect algorithmic 
modelling. Especially in the case of 
DRM, these biases can have important 
repercussions if they are the basis on 
which the vulnerability of populations 
is assessed. 

It is important to understand that ML 
algorithms are not bias-free, because 
in some cases, like deep learning, 
they obtain results without human 
interaction. It is crucial, therefore, to 
have diverse training datasets and to 
keep in mind whether the reality being 
modelled is from a data-poor area with 
geo-scarce information, and what the 
connection is with underrepresented 
and vulnerable populations and dev-
elopment goals. Disasters impact 
vulnerable groups disproportionately, 
and any bias involving the information 
of characteristics of these groups can 
have a big impact. 

To alleviate those issues, algorithmic 
accountability and algorithmic trans- 
parency are two principles that address 
the degree to which the results of 
an ML algorithm can be understood. 
Especially when ML algorithms result 
in concrete decisions (e.g., insurance 
rates on houses, the prioritization of 
investments, or protection measures), 
it is important that the public can 
understand why they qualify or do 
not qualify for a certain subsidy or 
policy. Similarly, if the driving factors 
behind ML models are understood, one 
should understand that by making the 
results of an algorithm public, they 
may unintentionally be publicizing 
underlying factors which are more 
sensitive from a privacy point of view. 

For a very thorough collection of 
resources on this topic please see this 
article: Toward ethical, transparent 
and fair AI/ML: a critical reading list at

BIAS

https://medium.com/@eirinimalliaraki/toward-
ethical-transparent-and-fair-ai-ml-a-critical-
reading-list-d950e70a70ea
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5. MACHINE LEARNING IN THE COMMONS

Photo Credit: WB/DaLA team
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Open data are data that are technically 
and legally open and shared in a 
machine-readable format using open 
standards, with proper documentation 
on origin and quality, as well as with 
clear licenses that allow for reuse of 
the information. This final point is often 
neglected, but it can be crucial when it 
comes to using data in an emergency 
situation with little time to figure out 
licensing issues. Open data provide 
several benefits: data can be created 
once and be reused many times for 
multiple purposes, ensuring economy 
of scale, avoiding duplication, and 
maximizing the use of resources.

In the context of ML, training data 
should be shared using open standards 
so it can be reused by others to train 
other algorithms. Training is often one 
of the most costly aspects of putting 
together an ML project, as it can be 
tedious and manual to assemble. 
Therefore, sharing training data can 
catalyze potential ML applications. 
For instance, for satellite imagery and 
labelled data, several standards such 
as Cloud Optimized GeoTiff6 (COG), 
and SpatioTemporal Asset Catalog7 
(STAC), as well as repositories such 
as MLHub (https://www.mlhub.
earth) are being developed to allow 
sharing and interoperability of tools 

and training datasets across projects 
and the industry. On the other end 
of the process, the output—the data 
generated by the ML algorithm should 
also be shared—as it can be critical 
for many development decisions. 

For instance, base exposure datasets, 
such as building infrastructure and 
roads, can be used by many sectors 
for many different decisions. In this 
context, it is again important to use 
best practices to share the output data 
using open standards, documentation, 
and proper licensing.

5. MACHINE LEARNING IN THE COMMONS

As promoted by the Principles for Digital Development4 and the Open Data for Resilience principles,5 using open innovation 
through the use of open standards, open data, and open-source software can greatly benefit sustainable development. 
Depending on the context and needs of a project, some data may have privacy issues, or the extent to which open-source is 
used may be different. But, overall, embracing open innovation can greatly increase the use of public resources by avoiding 
duplication, fostering education, creating new knowledge, and providing opportunities by empowering individuals worldwide 
with open data and tools. These principles also apply to the development and use of ML algorithms. Throughout the process of 
ML projects, several aspects can benefit from being documented and shared: the training data, the algorithm, the methodology, 
and the output data as described in the following sections. They can come together for open ML approaches to support 
sustainable disaster risk management and development goals.

5.1 OPEN DATA 

5.2 OPEN-SOURCE SOFTWARE 
AND DOCUMENTED 
METHODOLOGY
Given the amount of data handled, the 
time needed to train algorithms, and 
the computing power required, there 
is a natural trend of centralization of 
data and algorithms in the cloud under 
proprietary licenses to be used as a 
platform or software as a service for a 
fee when it is run and used. 

Although this approach can be 
economical and more practical for the 
end users, it can limit the potential 
of those tools for development, 
innovation, and education. Even if 
deployed in production as software as 

 4https://digitalprinciples.org/
5https://opendri.org/resource/opendri-policy-note-principles/

6https://trac.osgeo.org/gdal/wiki/CloudOptimizedGeoTIFF
7https://github.com/radiantearth/stac-spec
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5.3 CROWDSOURCING AND
CAPACITY BUILDING

a platform, some domains of ML such 
as computer vision have a tradition of  
open sourcing the code used in order to 
foster sharing of knowledge and increase 
innovation. Similar to open data, open-
source allows for economy of scale by 
enabling many computer programmers 
and scientists to collaborate on the 
same code and improve the same code 
together. This collaboration will also 
improve the quality of the code, as 
more people are checking it and running 
it. It is key to develop open-source tools 
where possible and invest in software 
as a public good,8 especially where 
economy of scale can be achieved 
across an institution or institutions. 
Contributions and support to open-
source software can materialize in 
different ways—not only code, but also 
documentation, user and developer 
events, user design, and others, as 
shown with previous example such as 
GeoNode.9 Some examples of open-
source software for ML are TensorFlow 
and remote sensing-specific tools like 
Mapbox’s RoboSat.

In the last decade or so, there has been a 
huge growth of volunteer and networked 
communities of individuals mapping 
data together. In general, these are 
called collaborative or crowdsourced 
maps, and they have created everything 
from OpenStreetMap to satellite image 
feature recognition in humanitarian 
efforts. These networks of humans have 
been brought together and allowed to 
work collaboratively by ever-evolving 
software that enables seamless work 
in crowds that can be formed by 
individuals all over the world connected 
by the Internet. 

This is particularly important in the 
context of the enormous growth 
and ubiquity of ML methods in 
computer science, and those that are 
increasingly applied to disaster risk 
management. 

For the applications described in this 
note to be successful, ML algorithms 
will need more and more “label” data so 
they can be supervised and the accuracy 
of their results validated. This is an area 
where it will be key to hybridize the 
work of humans and computers so that 
their efforts can be optimized to achieve 
the maximum efficacy on a project. 
Crowdsourcing platforms like OSM 
already have provided over a decade of 
experience in leveraging large networks 
of people to manually add features and 
labels to maps where computers could 
not do so. 

There is an obvious link between 
harnessing the power of the crowd to 
provide much-needed training data for 
ML algorithms. For example, Google 
has been using re-CAPTCHA to train 
image recognition algorithms. Involving 
the crowd to provide annotated data 
can help provide a large amount of 
information to help train accurate 
models. Especially when involving 
people from various parts of the 
globe, there is a possibility to add local 
knowledge and avoid biases such as 
those described above. 

Beyond generating training data, there 
are also a number of projects looking at a 
hybrid approach, where the algorithm’s 
output solely aims to aid the human. 
Some of those examples relevant to 
development issues include AI-assisted 
road tracing by Facebook,10 where the 
ML algorithm output predicted roads, 
but humans will ensure their accuracy 
and topology before entering them in 
OpenStreetmap. Then this dataset can 
be used for many types of accessibility 
studies. Similarly, DevSeed has set up a 
similar electric grid mapping system11 
for the World Bank, claiming that it 
made the human mapper 33 times more 
efficient. Overall, this approach can 
ensure high data quality while making 
the human’s tasks less tedious.

8https://digitalprinciples.org/resource/howto-calculate-total-cost-enterprise-software/
9https://opendri.org/resource/opendri-geonode-a-case-study-for-institutional-investments-in-open-source/

10https://wiki.openstreetmap.org/wiki/AI-Assisted_Road_Tracing
11https://devseed.com/ml-grid-docs/ 
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5.4 MACHINE LEARNING FOR 
SUSTAINABLE DEVELOPMENT: 
FROM USE CASES TO 
STANDARDIZED TRAINING DATA

However, it is important to avoid 
a situation where all advanced AI 
knowledge, software, and data are 
centralized with a few large Silicon 
Valley companies. Education and cap-
acity building should be stimulated. 
Building on the Open Data for 
Resilience principles, when developing 
a DRM project, it is also important to 
consider new ways of involving local 
universities and knowledge centers. 
Increased human capital and access 
to computing resources will help pave 
the way for new mapping techniques 
and significant advancements in the 
disaster risk management area. That 
human capital, together with ML 
algorithms, will certainly pave the way 
for the future of mapping in the disaster 
risk management arena. 

Of particular concern to the World 
Bank GFDRR is data openness and 
transparency, capacity building, and 
the role of crowdsourcing, such as 
the OpenStreetMap community. 

In terms of crowdsourcing, there is 
tremendous potential in using the 
networks and tools already established 
to go from mapping to training and 
testing ML algorithms. While this 
feature has not been used widely to 
date, we believe that it could provide 
a future avenue for generating large 
ML algorithm training and testing 
datasets. The OSM map-filling, capacity 
building, and networking events known 
as “mapathons” could be envisioned 
as “trainathons”—the difference being 
that the final output of the training and 
validation of an ML algorithm could be 
to fill the map of an area or label it with 
much higher speed and scale. The OSM 
ecosystem’s existing tools that allow 
nested validation by expert mappers, 
and also the easy tiling/prioritization 
of mapping areas like in HOT OSM’s ID 
editor, would already provide the most 
important data needed for a successful 
project using  ML.

At the same time, this conversation 
revolving around training and testing 
data would allow local communities 
to build their capacity and have a say in 
and ownership over their own data and 
results of an ML algorithm.

Putting together all these components 
in an open and interoperable way 
creates potential for networked global 
data systems using ML algorithms to 
provide enormous societal benefits 
in disaster risk management as well 
as, more broadly, the Sustainable 
Development Goals (SDGs).

Concretely working toward the creation 
of an open framework encompassing 
the different use cases, the training 
data required, and the algorithm to be 
trained, all following open standards, 
will provide the structure to scale ML 
efforts across geography and sectors. 
It will also provide transparency and 
opportunities for capacity building, 
crowdsourcing, and knowledge sharing. 
GFDRR is joining efforts such as MLHub 
to create a network of distributed rep-
ositories that provide access points to 
openly share ML training data, models, 
and standards. This also supports the 
key role that open data and software, 
collaborative networks, crowdsourcing, 
and capacity building have to play 
together in the future of ML algorithms 
to support DRM and SDGs alike.
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6. CASE STUDIES IN 
DISASTER RISK MANAGEMENT

Saint Lucia building hurricane vulnerability: Windows being automatically detected (red), distinguished from garages (green) and doors (no detection), GOST, WB.
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6. CASE STUDIES IN 
DISASTER RISK MANAGEMENT

The following case studies fall into four categories: 6.1 physical exposure and vulnerability, 6.2 social exposure and 
vulnerability, 6.3 risk mapping and damage prediction, and 6.4 post-disaster event mapping and damage assessment. 

These case studies were selected as 
they provide an overview of how ML 
can support various aspects of DRM. 
They represent different geographical 
regions, various input datasets and 
units of analysis, and various ML 
algorithms. An overview is provided 
of the key characteristics of each case 
study: the objective, input data and 
reference data used, scale of analysis, 
the algorithm used, who performed the 
analysis, results and lessons learned 

and where to find more information. 
This selection is not comprehensive 
and will be updated regularly, as this 
is a booming field with many new 
applications of ML being developed 
on a monthly basis—new upcoming 
applications involve prioritizing building 
inspection, social media mining for 
response awareness, monitoring of 
rebuilding and recovery activities, 
support to insurance claims, and  
many others. 
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Underlying DRM goal Quickly identify seismically vulnerable “soft-story” homes

Which input data 
were used

• Drone imagery (eBee, RGB, 4 cm)
• Point cloud elevation data 
• Street-view imagery (Trimble MX, (30 megapixel)

Reference data OpenStreetMap road layer

Unit of analysis Pixel/object (building)

Scale of analysis Neighborhood-level (three neighborhoods of approximately 10 km² 
in Guatemala)

Which algorithm was 
used

Deep learning

Who completed the 
analysis

GOST/GSURR

Results and lessons 
learned

• This method screens a neighborhood of 5,000 homes and is able 
to identify some 500 that need further inspection and possible 
retrofitting/strengthening.

• Of the “soft-story” buildings flagged by engineers (who viewed 
them from the outside) this method caught 85% of them.

• This detailed databases as potentials for input into exposure 
databases, locating and prioritizing retrofitting/housing 
upgrading projects.

• Automatic detection of large first-floor openings was done with 
data collected by the team—but to scale up, Google Street View 
and/or Mapillary should be considered.

• Satellite imagery was also explored to see if 50-30cm could 
be used to measure the height if buildings. NTT was hired and 
delivered a layer that was good but tended to lump households 
together, especially in dense neighborhoods.

6.1 PHYSICAL EXPOSURE AND
VULNERABILITY
6.1.1 Guatemala City building
earthquake vulnerability 
Detecting seismic vulnerability in 
urban areas is critical. Identifying 
high-risk buildings can save lives and 
help prioritize retrofitting investments. 
However, sending large teams of 
surveyors into the field is time con-
suming and expensive. Instead, this 
case study leverages imagery from 
satellites and drones, and street-view 
images from 360° street cameras to 
identify homes that are a high risk for 
collapse during an earthquake. Digital 
elevation models from satellite imagery 
helped identify buildings located on 
steep slopes, which are at higher risk  
for mudslides. 

A combination of satellite and drone 
imagery helped identify rooftop 
material, suggesting underlying con-
struction techniques which are more 
vulnerable to seismic activities. The 
availability of street-view imagery is 
unique, as it can be used to identify 
soft-story constructions which are 
vulnerable to seismic activities. 

This case study is a good example 
of how different physical factors of 
vulnerability can be extracted from 
various data sources and the unique 
capabilities of street-view imagery. The 
deep learning algorithm trained on the 
street-view imagery caught 85% of the 
buildings which were flagged by expert 
engineers as vulnerable.

Possible soft story
(determined by images)

Possible soft story 
(determined by Experts)

Possible soft story 
(determined by both)

The map above illustrates the “Rapid Housing Quality Assessment”, done by Sarah Antos, 
Geospatial Operations Support Team (GOST), World Bank
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6.1.2 St. Lucia building 
hurricane vulnerability
What kind of damage would Saint Lucia 
experience if it was hit by a Category 5 
storm? Using a recent detailed damage 
assessment conducted in neighboring 
Dominica, physical characteristics such 
as roof material and the shape and size 
of buildings were used to predict the 
vulnerability of individual structures in 
Saint Lucia.

Underlying DRM goal Estimate hurricane rooftop vulnerability in small island states 
(Caribbean)

Which input data 
were used

• Drone imagery (eBee, RGB, 4 cm)
• Point cloud elevation data 
• Street-view imagery (Trimble MX, (30 megapixel)

Reference data OpenStreetMap building footprints that were downloaded from the 
Charmin geonode

Unit of analysis Pixel/object (building)

Scale of analysis City-level (three cities of approximately 9 km² in Saint Lucia)

Which algorithm was 
used

Conditional random field model—several python libraries combined 
with MpGlue

Who completed the 
analysis

GOST/GSURR

Results and lessons 
learned

• Using the variables (and combination of them) that most 
powerfully predicted damage in Dominica, each structure in Saint 
Lucia was given an estimate of destruction. For example, you can 
expect a general 40% damage; however, if the roof is smaller and 
has only two panels (gables) you can expect more than 40%.

• Volume, roof shape, and roof type were all influential. Large, 
highly pitched roofs with PVF2-coated metal sheeting tended to 
do the best.

• Algorithm predicted roof shape (hip vs. gable) more easily than 
material, due to the three-band drone camera.

• We are now working to add valuation information and general 
“quality” index, such as “rustiness.”

The map detail above shows building vulnerability to hurricane winds, classified by cardinal 
direction (aspect). Sarah Antos, Geospatial Operations Support Team (GOST), World Bank.

North (0–22.5)
Northeast (22.5–67.5)
East (67.5–112.5)
Southeast (112.5–157.5)
South (157.5–202.5)
Southwest (202.5–247.5)
West (247.5–292.5)
Northwest (292.5–337.5)
North (337.5–360)
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6.1.3 Monitoring urban growth 
through floor space index
Regular, cloud-free satellite images 
combined with ML algorithms can 
be used to monitor horizontal and 
vertical urban growth. This study uses 
crowdsourced building footprints and 
height information to train an ML  
model to be used for urban monitoring
in Dar es Salaam.

Underlying DRM goal Urban growth monitoring, focussing on built-up area and building 
height

Which input data 
were used

• Satellite imagery (RGB, 3.7 m)
• Digital surface model (DSM) extracted from stereoscopic satellite 

imagery (0.8 m)

Reference data OpenStreetMap building footprints and height attribute collected 
during the Ramani Huria project

Unit of analysis Pixel

Scale of analysis City-level (5,280 km² in Dar es Salaam, Tanzania)

Which algorithm was 
used

Deep learning, convolutional neural networks

Who completed the 
analysis

Planet

Results and lessons 
learned

• The study shows how to combine OSM reference data and machine 
learning methods.

• Building footprints were extracted to an accuracy of 77%; the 
correct number of floors predicted for 23% of the buildings.

• Difficulties were caused by densely built (informal) areas.
• Results would likely improve with higher resolution imagery.

More information Executive Summary: Monitoring Urban Change with Satellite Imagery 
and Analytics pp. 36, 37, 40, 41, 43-46.

graphics
(Figure 12B in WB Report)

0 1 2 3 4 5 km

Building to Non-Building Ratio—Inner-City Wards of Dar es Salaam, August 2017 
Figure 12 in WB report
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Followup Building Inspections Results
relative densities of buildings that passed after initially failing an in inspection (left) and those that failed (right)

One-time violations

Source: Azavea, Data: Philadelphia Department of Licenses and Inspections

Repeat violations

Total
Violations

6.1.4 Targeting high-risk buildings 
for building inspection
Building inspection is an important 
measure to mitigate the risks of fire. 
However, as cities grow, it becomes 
increasingly difficult to prioritize 
which buildings should be inspected. 
Some emerging methods combine 
geospatial data and building attributes 
to determine which buildings present 
the greatest risk.

An example by Azavea focuses on 
the likelihood of a building which 
failed a past violation to fail again. 
The model makes use of open data 
from the OpenDataPhilly portal, 
which provided information on more 
than 55,000 building inspections in 
more than 25,500 locations. Various 
features of the building inspections 
were considered, such as the duration 
between inspections, type of violation, 
location variables, the total number 
of violations, building vacancy, and 
tax delinquency. A feature selection 
was performed to remove variables 
which were not relevant for predicting 
a repeat violation. The model results 
indicate that repeated violations 
of building inspections could be 
predicted with an accuracy above 74%.

Underlying DRM goal Building regulation violations

Which input data 
were used

• Cases and descriptions of previous building violations
• Locations
• Building vacancy
• Tax delinquency

Reference data Building inspection reports from the City of Philadelphia’s Department 
of Licenses and Inspections.

Unit of analysis Building

Scale of analysis City-level (Philadelphia, USA)

Which algorithm was 
used

Gradient boosting and random forests

Who completed the 
analysis

Azavea

Results and lessons 
learned

• The model was able to predict repeated building violations with an 
accuracy of 74%.

• The results can help building inspectors allocate resources 
effectively by targeting high-risk buildings.

More information Predicting Building Inspections 
Predicting Building Code Compliance with Machine Learning Models

Follow-up Building Inspection Results
Relative densities of buildings that passed after initially failing an inspection (left) and those that 
failed (right) Source: Azavea, Data: Philadelphia Department of Licenses and Inspections

One-time violations Repeat follow-ups

Followup Building Inspections Results
relative densities of buildings that passed after initially failing an in inspection (left) and those that failed (right)

One-time violations

Source: Azavea, Data: Philadelphia Department of Licenses and Inspections

Repeat violations

Total
violations
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True poverty rate (40%) Predicted poverty rate (40%)

Seethawaka
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0.298–0.328

0.329–0.359

0.360–0.395

0.396–0.826

0 1.5 3 6 9
Miles

6.2 SOCIAL EXPOSURE AND 
VULNERABILITY
6.2.1 Sri Lanka poverty mapping
Poverty data are in scarce supply 
and difficult to collect. This study 
investigates the suitability of features 
derived from very high-resolution 
satellite imagery to estimate poverty 
at a local level in Sri Lanka, allowing 
these estimations to be extrapolated to 
areas not covered by surveys. A unique 
partnership with OSM provided access 
to a large amount of labelled data to 
support the ML algorithm.

A large number of object- and pixel-
based features describing agricultural 
land, cars, building density and 
vegetation, shadows, road and 
transportation networks, roof types, 
and textural/spectral characteristics 
were extracted from the imagery. A 
linear regression was established to 
determine the relationship between 
these features and poverty levels taken 
from census data.

Underlying DRM goal Estimate poverty levels

Which input data 
were used

• Satellite imagery (RGB, < 0.5 m)
 ◦ Object-based features

 ▪ Number of buildings
 ▪ Number of cars
 ▪ Fraction roads paved
 ▪ Shadow pixels (building height)
 ▪ Crop type/extent
 ▪ Roof type

 ◦ Pixel-based features
 ▪ Vegetation index
 ▪ PanTex (settlement density)
 ▪ Texture (HoG, LBP, Line Support Region, Gabor filter, Fourier 

transform, SURF)

Reference data Two poverty lines (10th and 40th percentiles of the national per 
capita consumption distribution) which were obtained from 2011 
census data

Unit of analysis Pixel/object (administrative unit)

Scale of analysis Regional (3,500 km² covering 1,250 administrative units in Sri Lanka)

Which algorithm was 
used

• Deep learning (convolutional neural networks) to calculate 
percentage of built-up area, number of cars, shadow pixels, and 
crop type for each administrative unit

• Support vector machines and visual identification to obtain 
information regarding roof type, paved and unpaved roads, and 
railroads

Who completed the 
analysis

WB poverty team working with Orbital Insight, LAND INFO Worldwide 
Mapping, LLC, and the George Washington University Department of 
Geography

Results and lessons 
learned

• Analysis can explain 60–61% of the variation in a small area 
(compared to 15% when using night lights analysis).

• Building density, built-up area, and shadows were some of the 
most influential features describing variations in poverty.

• Normalized error rates of 0.25–0.5 of poverty rates when applying 
the model to geographically adjacent areas.

• Project cost $90,000 total.

More information Graesser J B, Cheriyadat A M, Vatsavai R, Chandola V, and Bright 
E A. 2012. Image Based Characterisation of Formal and Informal 
Neighborhoods in an Urban Landscape. IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing, 5. 

Figure 6 in WB report
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6.2.2 Informal settlement mapping
In 2012, a peer-reviewed paper by 
Graesser et al. mapped the informal 
settlements in four major cities, using 
an automated ML algorithm to classify 
satellite imagery. According to the 
authors, in remote sensing imagery, 
informal settlements share unique 
spatial characteristics that distinguish 
them from other types of structures 
like industrial, commercial, and formal 
residential areas. After a thorough 
literature review of remote sensing 
methods that have been used for similar 
objectives, the authors used several low-
level image features at multiple scales 
to characterize local neighborhoods, 
separated based on a series of spatial, 
structural, and contextual features.
 
Graesser et al. outlined how formal 
and informal neighborhoods can be 
visibly separated given enough spatial 
resolution of the imagery used. Informal 
settlements often share unique spatial, 
structural, and contextual features that 
separate them from other types of urban 
neighborhoods. These characteristics can 
include:

• A high heterogeneity in building 
orientation (most buildings aren’t 
“neatly” oriented along a planned 
space [e.g., a road])

• A high variance in building materials 
used and density of the structures (as 
opposed to formal settlements, where 
there would be more homogeneity of 
these features in a neighborhood)

• Small building size (as opposed to 
larger buildings with more stories in 
formal settlements)

• Irregular and narrow streets (as 
opposed to wider and straighter 
planned streets)

• Informal neighborhoods that are often 
closer to hazardous zones like landfills, 
airports, railroads, and steeper slopes

Underlying DRM goal Identification of informal settlements

Which input data 
were used

• Satellite imagery (RGB, < 0.5 m)
 ◦ Pixel-based features

 ▪ Vegetation indices
 ▪ GLCM PanTex (settlement density)
 ▪ Texture (HoG, lacunarity, linear feature distribution, line 

support region, SIFT, yextons)

Reference data Manual labelling of imagery

Unit of analysis Pixel

Scale of analysis City (74 km² of Kandahar, Afghanistan; 203 km² of La Paz, Bolivia; 
220 km² of Kabul, Afghanistan; 348 km² of Caracas, Venezuela)

Which algorithm was 
used

Decision trees

Who completed the 
analysis

Graesser J B, Cheriyadat A M, Vatsavai R, Chandola V, and Bright E A of 
Oak Ridge National Laboratory

Results and lessons 
learned

• Texture features in submeter satellite imagery were found to be 
suitable for distinguishing formal vs. informal areas in cities.

• ML algorithm had an accuracy of 85–92% for the four cities.
• Authors suggest that methods which take multiple neighboring 

pixels into account may improve results.
• The study relates social vulnerability to the physical appearance 

and arrangement of buildings and roads; this will depend on local 
context, and one should take care when applying the models to 
other areas.

More information Graesser J B, Cheriyadat A M, Vatsavai R, Chandola V, and Bright 
E A. 2012. Image Based Characterisation of Formal and Informal 
Neighborhoods in an Urban Landscape. IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing, 5. 

Classification results for 
Kabul. The results have been 
smoothed usnig a 11x11 
majority filter. 

(a) Formal and informal 
      (Type I) residential. 

(b) Informal (Type II)    
      residential built on   
      slopes. 

(c) Non-residential

Classification results 
for Kabul. The results 
have been smoothed 
using an 11 x 11 majority 
filter.

(a) Formal and informal 
(Type I) residential

(b) Informal (Type II) 
residential built on 
slopes

(c) Nonresidential
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6.2.3 Stanford poverty study
Poverty mapping based on census 
data is often expensive and difficult 
to collect at a large spatial scale and 
update frequently. This study aims 
to use remote sensing to predict the 
ratio of households above the poverty  
line in Uganda. 

This study shows an alternative 
strategy of how to use deep learning 
when limited training samples are 
available. First, a deep learning model, 
which learned image features from an 
object detection challenge (ImageNet) 
is used. Due to the lack of survey data, 
the researchers use night light data 
(a proxy for economic development) 
to train the model to learn relevant 
features, which are then used to form 
a logistic regression model predicting 
poverty levels.

Underlying DRM goal Poverty mapping

Which input data 
were used

• Deep learning model trained on ImageNet
• NOAA nightlights imagery
• Google Maps imagery 

Reference data • Night-time lights
• Governmental household surveys

Unit of analysis Pixel (1 km x 1 km grid), object (districts)

Scale of analysis National (Uganda)

Which algorithm was 
used

Deep learning (fully convolutional neural network) and logistic 
regression classifier

Who completed the 
analysis

Stanford University

Results and lessons 
learned

• Proposed method can predict poverty levels with 72% accuracy. 
This is comparable to results of the logistic regression when using 
survey-based features to predict the surveyed poverty levels.

• This shows how a proxy dataset can be used to develop a machine 
learning model when not enough reference data are available.

More information Transfer Learning from Deep Features for Remote Sensing and  
Poverty Mapping
Stanford researchers use dark of night and machine learning to shed 
light on global poverty

Block poverty probabilities District poverty probabilities Uganda poverty rates (2005)
High

Medium

Low

Figure 3 from the Arxiv paper
Left: Predicted poverty probabilities at a fine-grained 10 km x 10 km block level. Middle: Predicted 
poverty probabilities aggregated at the district level. Right: 2005 survey results for comparison
(World Resources Institute 2009)
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6.3 RISK MAPPING AND DAMAGE 
PREDICTION
6.3.1 Flood damage prediction
Many flood damage assessment models 
utilize water depth to calculate damage 
curves based on specific location and 
flood conditions. Applying the same 
curves to different situations therefore 
often produces unreliable results. This 
project researches how the inclusion 
of additional variables can be used to 
improve the transferability of flood 
damage prediction models.

Bayesian networks and regression 
random forests were constructed to 
relate the relative building damage 
or relative content damage reported 
by surveyed households to various 
input features. Results show that 
models which are trained using 
heterogeneous data (i.e., flood events 
with various characteristics) have 
a higher performance. The authors 
emphasize the importance of acquiring 
a heterogeneous training set for flood 
damage models, including a variety of 
flood events, geographical locations, 
and asset characteristics. 

Underlying DRM goal Flood damage assessment

Which input data 
were used

• Water depth
• Building type
• Building footprint area
• Floor area for living
• Building age
• Basement
• Household size
• Flow velocity
• Flood duration
• Return period
• Flood experience
• Precautionary measures

Reference data Relative building damage and relative content damage from field 
surveys

Unit of analysis Tabular (survey data) 

Scale of analysis Regional (a flood event in the Netherlands in 1993 and six flood events 
in Germany between 2002 and 2013)

Which algorithm was 
used

Bayesian networks and random forests (regression)

Who completed the 
analysis

Deltares, GFZ German Research Centre for Geosciences

Results and lessons 
learned

• Updating an ML algorithm with data from a different country 
improves the model’s performance on flood events from that 
country.

• The collection of training data from various flood events and 
regions may be more effective than a large amount of information 
from a single event.

More information Regional and Temporal Transferability of Multivariable Flood  
Damage Models

fe

pre

rcd/rbdfa

bt

fd

rp

wdt

Structure of the German Bayesian Network based Flood Damage Estimation Model for the private 
sector BN-FLEMOps

Structure of the German Bayesian Network-based Flood Damage Estimation Model for the private 
sector BN-FLEMOps
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6.3.2 Machine learning-powered
seismic resilience for San Francisco
Modelling structural damage from 
earthquakes (as with other hazards) 
is challenging due to the number of 
factors which influence the process. 
A proprietary algorithm developed 
by OneConcern models seismic 
resilience by predicting the structural 
damage resulting from earthquakes. It 
leverages various data sources such as 
earthquake shaking parameters, soil 
and seismic hazard characteristics, 
multiple building characteristics, and 
real-time field input to estimate the 
impact of earthquakes. Data from 
previous earthquakes are used to train 
the ML models, which are optimized 
using a unique performance measure 
to ensure a better estimation of higher 
damage to buildings. Techniques such 
as geographical hold-out, event hold-
out, and randomized hold-out are 
used to further improve the model’s 
performance.

OneConcern also focuses on using 
the developed model to provide 
real-time and on-demand situational 
awareness right before, during, and 
immediately after a seismic event. 
The damage predictions are made at 
a census block-level resolution, thus 
visualizing detailed localized data for 
seismic hazards throughout the city 
of San Francisco while maintaining 
the anonymity of the individual blocks 
within the city. This also enables the 
risks and vulnerability data to be 
democratized by sharing it with local 
communities and volunteers.

Underlying DRM goal Earthquake structural damage modelling

Which input data 
were used

• Seismic shaking data for the earthquake of interest
• Soil characteristics
• Seismic hazard parameters
• Building characteristics like material, number of stories, area, etc.

Reference data Historical earthquake damage data from multiple events

Unit of analysis Tabular (survey data)

Scale of analysis City block–level

Which algorithm was 
used

Proprietary algorithm

Who completed the 
analysis

OneConcern, Inc.

Results and lessons 
learned

• Making use of data streams from multiple sources and at multiple 
resolutions can gain a higher training accuracy.

• It is important to use diverse data sources to ensure 
generalizability of the algorithms.

• The inclusion of localized data captures effects which are generally 
not identified through generic methods.

Figure from the original study, available at: 
https://medium.com/@oneconcerninc/2018-the-dawn-of-benevolent-intelligence-263c6bd1a63

Evacuation team

Seniors (>65 years old)

Low Income (<10,000 annual)

Spill containment

Emergency medical service
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6.3.3 Real-time global landslide 
hazard mapping
The Landslide Hazard Assessment 
for Situational  Awareness (LHASA) 
provides landslide hazard data in real 
time. An algorithm was trained which 
links landslide susceptibility factors 
(slope, geology, road networks, fault 
zones, and forest loss) to historical 
landslide  events. This model is 
applied to precipitation data from 
the Global Precipitation Measurement 
(GPM) mission at three-hour intervals. 
When the rainfall for a given region 
is extremely high for that region, 
the landslide susceptibility map is 
consulted. If a region is also classified 
as being highly susceptible to a 
landslide, a nowcast warning is issued. 
Thus, LHASA provides near-real-time 
situational awareness of landslide risk 
on a global scale, presented in an open-
source framework.

Underlying DRM goal Landslide hazard mapping

Which input data 
were used

• Elevation
• Faults and geologic regions
• Roads
• Forest cover
• Rainfall

Reference data Global Landslide Catalog

Unit of analysis 0.1°

Scale of analysis Global (between 50°N and 50°S)

Which algorithm was 
used

Decision tree

Who completed the 
analysis

NASA

Results and lessons 
learned

• The model would have issued a nowcast for historical landslide 
events with a false positive rate below 3% and true positive rate of 
up to 60%.

• Lack of historical data and locational accuracy of historical 
landslide events make it challenging to train a good model. The 
Cooperative Open Online Landslide Repository was launched to 
obtain additional reference data through citizen science.

More information NASA landslide map estimates risk in real time

Satellite Based Assessment of Rainfall Triggered Landslide Hazard for 
Situational Awareness

(a) Global landslide susceptibility map computed using slope, geology, fault zones, road networks, 
and forest loss (Stanley and Kirschbaum, 2017); (b) Global Landslide Catalog (2007–2016) showing 
the distribution of landslide fatalities (Kirschbaum et al., 2015)

a

b

43 MACHINE LEARNING FOR DISASTER RISK MANAGEMENT

https://www.upi.com/NASA-landslide-map-estimates-risk-in-real-time/7621521744086/
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2017EF000715
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2017EF000715


6.3.4 Wildfire prediction
Two high school students invented 
a device to predict the probability 
of a forest fire occurring. The device 
is placed in the forest and can take 
real-time photos which are uploaded 
to SensorInsight to enable real-
time visualization. Deep learning 
algorithms are used to analyze the 
images and predict the amount of 
dead fuel present in the sensor’s area. 
This information is combined with 
local weather data to predict the  
possibility of a fire. 

This study is based on a relatively 
small sample size and will likely 
require extensive validation with more 
substantial reference data. Despite 
these factors, it is a very unique case 
study as it showcases a grassroots 
solution and how to combine ML 
algorithms to obtain real-time risk 
predictions. The Smart Wildfire Sensor 
they devised is being further developed 
and tested with Cal Fire in three 
counties in California.

Underlying DRM goal Real-time wildfire prediction

Which input data 
were used

• Weather data
 ◦ Humidity
 ◦ Temperature
 ◦ Gas
 ◦ Carbon monoxide/dioxide
 ◦ Wind

• Images

Reference data Approximately 100 randomly sampled images of grass and shrubs 
from Google Images

Unit of analysis Point (locations of sensors placed in forests in California)

Scale of analysis Regional (selected forests in California)

Which algorithm was 
used

Deep learning

Who completed the 
analysis

Cal Fire and Monta Vista High School

Results and lessons 
learned

• Classifies images of grasses and shrubs into 14 classes indicating 
various forest fire risk levels with 89% accuracy.

• Model will likely require more extensive validation.
• Real-time, grassroots approach of using ML algorithm for DRM.

More information Fighting fire with machine learning: two students use TensorFlow to 
predict wildfires

Image from the original study, available at: 
https://www.blog.google/technology/ai/fighting-fire-machine-learning-two-students-use-
tensorflow-predict-wildfires/
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6.4 POST-DISASTER EVENT 
MAPPING AND DAMAGE 
ASSESSMENT
6.4.1 Flood extent mapping
Orbital insight developed a project 
in 2017 in which they used Synthetic 
Aperture Radar (SAR) as an input for 
an image classification algorithm 
that allowed the categorization of 
at-risk areas for flooding in Houston, 
Texas, U.S.A. A combination of optical 
and SAR imagery (which is capable 
of “looking” through clouds) helped 
identify the flooding extent. Digital 
elevation models (DEMs) allowed 
natural watersheds to be delimited, 
and crowdsourced geotagged images 
were used to confirm the flood extents.

Underlying DRM goal Flood extent mapping

Which input data 
were used

• Optical satellite imagery
• SAR imagery (through clouds)
• Digital elevation models (DEMs)

Reference data Crowdsourced, geotagged images

Unit of analysis Pixel

Scale of analysis Hurricane Harvey flood event

Which algorithm was 
used

Deep learning

Who completed the 
analysis

Orbital insight 

Results and lessons 
learned

• Combining various types of large-scale spatial data helped 
estimate flood extent.

• Crowdsourced, geotagged imagery can help verify flooding in 
accuracy analysis.

More information Understanding the Extent of Flooding in Houston from Hurricane 
Harvey

How Orbital Insight Measured Hurricane Harvey’s Flooding through 
the Clouds

0.1
1.26
2.41
3.57
4.73
5.88
7.04
8.11
9

0 1 2 3 4 km

Actual flood maps after applying Orbital Insight’s geospatial interpolation across observation 
points and DEM (Source: Orbital Insight, Google Street Map)
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6.4.2 Cyclone damage assessment
The World Bank and UAViators 
collected UAV images after Cyclone 
Pam hit Vanuatu in 2015. High detail and 
the ability to collect data under cloud 
cover were advantages of using imagery 
from UAVs rather than satellites. At the 
time, volunteers from Humanitarian 
Open Street Map (HOT) and the Digital 
Humanitarian Network annotated the 
damage in the images.

Since then, the images and reference 
data have also been used to develop 
ML algorithms. Artificial Intelligence 
for Digital Response (AIDR) is an open 
platform combining crowdsourcing 
and ML to interpret social media data 
in disaster situations. A similar pipeline 
was developed for Cyclone Pam 
data when MicroMappers organized 
volunteers to identify and demarcate 
various levels of damage to buildings. 
These were used to train a deep 
learning algorithm (Nazr-CNN) to first 
recognize buildings and then identify 
damage levels. The study indicates a 
need for additional training samples in 
order to improve the transferability of 
the model.

Underlying DRM goal Damage assessment

Which input data 
were used

UAV optical imagery

Reference data Crowdsourced annotation of images

Unit of analysis Pixel

Scale of analysis Regional (Cyclone Pam, Vanuatu, 2015)

Which algorithm was 
used

Deep learning

Who completed the 
analysis

Artificial Intelligence for Digital Response (AIDR), Qatar Computing 
Research Institute, MicroMappers; World Bank and UAViators 
acquired the imagery

Results and lessons 
learned

• A pipeline was developed for combining crowdsourced damage 
annotation and deep learning with 63% accuracy.

• Tests on a damage event in the Philippines were 41% accurate, 
demonstrating a need for more training data to improve model 
predictions.

More information Lessons from Mapping Geeks: How Aerial Technology Is Helping 
Pacific Island Countries Recover from Natural Disasters

Nazr-CNN: Fine-Grained Classification of UAV
Imagery for Damage Assessment

UAV image Crowd annotation Semantic segmentation Proposed

Figure from the original study, available here: https://arxiv.org/pdf/1611.06474.pdfres/
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7. GLOSSARY

AGI: Artificial General Intelligence—the 
artificial intelligence that does not exist 
yet, where computers have learned the 
ability to be self-aware and tackle all 
different types of generalized problems 
in a way that’s indistinguishable from 
human intelligence

AI: Artificial intelligence—a term used 
to describe all types of computer 
machine learning

CAPTCHA: Completely Automated 
Public Turing test to tell Computers 
and Humans Apart—a tool ubiquitously 
used in web pages to discern humans 
from machines in an attempt to protect 
online resources from malicious 
software 

Commons: Resources and information 
that are freely available to all members 
of a community, e.g., wikis and open-
source software

Crowdsourcing: A method of creating 
data that leverages the communal work 
of a team or community (crowd), using 
software often made that allows the 
communal effort to be properly saved, 
validated, and analyzed to then become 
a common asset

Deep learning: A term that references 
the architecture of neural network 
algorithms, where there are hidden 
layers between the inputs and outputs 
that connect with each other in a way 
similar to neurons in the brain, albeit 
with many fewer connections 

DRM: Disaster risk management 

ESA: European Space Agency 

Forests (of Decision Trees): A 
common supervised ML algorithm, 
where the term “forests” refers not 

to the biological ecosystem, but to 
the fact that it uses many decision 
“trees”—decision structures where a 
yes/no decision is made at every fork, 
creating a “tree”

GANs: Generative adversarial networks 
https://skymind.ai/images/wiki/GANdancers.png 

https://skymind.ai/wiki/generative-adversarial-

network-gan

GDAL: Geospatial Data Library

GEOSS: Global Earth Observation 
Systems of Systems 

GFDRR: Global Facility for Disaster 
Reduction and Recovery of the World 
Bank

GOST: Geospatial Operations Support 
Team of the World Bank

GRASS: Geographic Resources Analysis 
Support System

HDX: Humanitarian Data Exchange

HOT: Humanitarian OpenStreetMap

ISET: Informal settlement

LiDAR: Light Imaging Detection and 
Ranging 

MLA: Machine learning algorithm

OBIA: Object-Based Image Analysis

OpenArialMap: Online platform for 
sharing openly satellite, aerial, and 
drone imagery

OpenStreetCam: An open data version 
of Street View, with street-level imagery 
collected from the ground
https://openstreetcam.org/

Optical Imagery: Imagery that is  
obtained via an optical sensor, 
whether in the visible Red-Green-Blue 
bands or in other wavelengths of the 
electromagnetic spectrum

OSM: OpenStreetMap, a global crowd-
sourced map of roads, buildings, and 
other physical features. OSM is an open, 
collaborative, crowdsourced version of 
other common maps, such as Google 
Maps or Bing Maps

QGIS: Quantum GIS , an open-source 
GIS software 

Radar/SAR: Synthetic-aperture radar, a 
type of sensor used in earth observation 

RMSE: Root-mean-square error, a type 
of statistical analysis used to assess the 
accuracy of MLA results

Supervision: Human training of ML 
algorithms to learn to classify data 
according to set target parameters  

UAV: Unmanned Aerial Vehicle
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8. REFERENCES AND RESOURCES

There are a number of online resources available, and for the 
user that wants to go more in depth, there are indeed courses 
as well as many academic papers and textbooks that can be 
referenced. The following is a curated list of these references 
and resources

8.1 ONLINE RESOURCES

8.2 VIDEOS AND TALKS

8.3 INFOGRAPHICS AND INTERACTIVE RESOURCES

8.4 ARTICLES AND BLOGS

• One of the most thorough and up-to-date courses 
on machine learning is from TechChange: Artificial 
Intelligence for International Development 
https://course.tc/301-1/c

• Educational resources on AI from Google  
https://ai.google/education/ 

• Crash course on Machine Learning from Google 
https://developers.google.com/machine-learning/crash-course/

• A Machine Learning online course on Coursera, from 
Stanford University 
https://www.coursera.org/learn/machine-learning

• Along with the above Coursera course, the following is 
specifically about Unsupervised Learning 
https://www.coursera.org/learn/machine-learning/lecture/olRZo/

unsupervised-learning

• Another resource for learning statistical methods is 
Datacamp 
https://www.datacamp.com/

• PBS Machine Learning and Artificial Intelligence: Crash 
Course Computer Science #34 
https://www.youtube.com/watch?time_continue=687&v=z-EtmaFJieY

• Deep learning in medical imaging 
https://www.youtube.com/watch?v=2_Jv11VpOF4&feature=youtu.

be&t=4m7s

• Understanding Machine Learning 
https://futurism.com/images/understanding-machine-learning-

infographic/

• Machine Learning 101 
http://usblogs.pwc.com/emerging-technology/machine-learning-101/

• A Beginner’s Guide to Machine Learning Algorithms  
http://dataconomy.com/2017/03/beginners-guide-machine-learning/

• A Visual Introduction to Machine Learning  
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

• The mostly complete chart of neural networks, explained 
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-

networks-explained-3fb6f2367464

• A Tour of the Top 10 Algorithms for Machine Learning 
Newbies 
https://www.kdnuggets.com/2018/02/tour-top-10-algorithms-machine-

learning-newbies.html

• Top 10 Machine Learning Algorithms for Beginners 
https://www.dataquest.io/blog/top-10-machine-learning-algorithms-

for-beginners/

• Experts, Crowds, Machines—Who Will Build the Maps of 
the Future? 
https://blog.mapillary.com/update/2017/12/21/who-will-build-the-

maps-of-the-future.html

• Updating Google Maps with Deep Learning and Street 
View  
https://research.googleblog.com/2017/05/updating-google-maps-with-

deep-learning.html

• Introduction to GBDX 
https://platform.digitalglobe.com/gbdx/

• GBDX Overview 
https://gbdxdocs.digitalglobe.com/docs/gbdx-overview-1

• Machine Learning and ethics —Toward ethical, transparent 
and fair AI/ML: a critical reading list 
https://medium.com/@eirinimalliaraki/toward-ethical-transparent-and-

fair-ai-ml-a-critical-reading-list-d950e70a70ea 

• The Building Blocks of Interpretability 
https://distill.pub/2018/building-blocks/ 

8.5 CONFERENCES AND MEETINGS
• Computer Vision conferences: ECCV, ICCV, CVPR, etc. 
• GFDRR Understanding Risk 

https://understandrisk.org/ 
• AI for Good Global Summit 2018  

https://www.itu.int/en/ITU-T/AI/2018/Pages/default.aspx

• Mapbox—Locate 
https://www.mapbox.com/locate
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8.6 CHALLENGES AND COMPETITIONS 

8.7 OTHER REFERENCES, ARTICLES, 
AND TEXTBOOKS

Challenges are an effective approach to get multiple people 
to try and tune models to the best of their ability in order to 
get the most accurate results. 

• We Robotics Open AI Challenge  
https://blog.werobotics.org/2018/05/16/announcing-winners-open-ai-

challenge/

• DeepGlobe  
http://deepglobe.org/

• SpaceNet  
http://explore.digitalglobe.com/spacenet

• DSTL Satellite Imagery Feature Detection  
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/

• Functional Map of the World Challenge  
https://www.iarpa.gov/challenges/fmow.html

• DIUx xView 2018 Detection Challenge  
http://www.xviewdataset.org/

• Engstrom et al. 2016.  
http://pubdocs.worldbank.org/en/60741466181743796/Poverty-in-HD-

draft-v2-75.pdf

• Geo-diversity for better, fairer machine learning  
https://developmentseed.org/blog/2018/03/19/geo-diversity/

• Gevaert C M, Persello C, Sliuzas R, and Vosselman G. 2017. 
Informal settlement classification using point-cloud and 
image-based features from UAV data ISPRS Journal of 
Photogrammetry and Remote Sensing Complete 225–36.

• Graesser J B, Cheriyadat A M, Vatsavai R, Chandola V, and 
Bright E A. 2012. Image Based Characterisation of Formal 
and Informal Neighborhoods in an Urban Landscape IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, 5. https://www.osti.gov/scitech/biblio/1050316

• James G, Witten D, Hastie T, and Tibshirani R. 2013. An 
Introduction to Statistical Learning vol 103 New York, NY: 
Springer New York. 
http://link.springer.com/10.1007/978-1-4614-7138-7

• Kirschbaum, D. B., T. Stanley, and J. Simmons (2015), A 
dynamic landslide hazard assessment system for Central 
America and Hispaniola, Nat. Hazards Earth Syst. Sci., 
15(10), 2257–2272, doi:10.5194/nhess-15-2257-2015.

• Kirschbaum D and Stanley T 2018 Satellite-Based 
Assessment of Rainfall-Triggered Landslide Hazard for 
Situational Awareness Earth’s Future 6 505–23

• Machine Learning Applications for Earth Observation. 
https://link.springer.com/chapter/10.1007/978-3-319-65633-5_8

• Mather P M, and Koch M. 2011. Computer Processing of 
Remotely-Sensed Images: An Introduction John Wiley and 
Sons.

• Mathieu P-P, and Aubrecht C. 2017. Earth observation 
open science and innovation New York, NY: Springer 
Science+Business Media.

• Sethi I K. 1990. Entropy nets: from decision trees to neural 
networks. Proceedings of the IEEE 78, 1605–13. 
https://ieeexplore.ieee.org/document/58346/figures

• Shankar et al. 2017. No Classification without Representa-
tion: Assessing Geodiversity Issues in Open Data Sets for 
the Developing World. https://arxiv.org/pdf/1711.08536.pdf
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