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A B S T R A C T

Detailed and up-to-date knowledge on the situation in temporary settlements of forced migrants plays an im-
portant role for effective humanitarian assistance. These settlements emerge as planned or spontaneous camps or
camp-like structures, characterized by a small-scale physical morphology and high dynamics. Information on the
built-up area (BUA; i.e. areas occupied by buildings) in these settlements provides important evidence on the
local situation. The objective of this work is to present a generic procedure for the detailed extraction of BUA in
complex temporary settlements from very high spatial resolution satellite data collected by different sensor
types. The proposed approach is embedded in the methodological framework of object-based image analysis and
is compound of i) the computation of an exhaustive set of spectral-spatial features aggregated on multiple
hierarchic segmentation scales, ii) filter based feature subset selection and iii) supervised classification using a
Random Forest classifier. Experimental results are obtained based on Pléiades multispectral optical and
TerraSAR-X Staring Spotlight Synthetic Aperture Radar satellite imagery for six distinct but representative test
areas within the refugee camp Al Zaatari in Jordan. The experiments include a detailed assessment of classifi-
cation accuracy for varying configurations of considered feature types and training data set sizes as well as an
analysis of the feature selection (FS) outcomes. We observe that the classification accuracy can be improved by
the use of multiple segmentation levels as well as the integration of multi-sensor information and different
feature types. In addition, the results show the potential of the applied FS approach for the identification of most
relevant features. Accuracy values beyond 80% in terms of κ statistic and True Skill Statistic based on sig-
nificantly reduced feature sets compared to the input underline the potential of the proposed method.

1. Introduction

1.1. Temporary settlement analyses – the benefit of Earth observation

As a consequence of the numerous ongoing crises, large scale dis-
placement of people has reached an unprecedented level in recent
history. According to the United Nations High Commissioner for
Refugees (UNHCR, 2016), there were about 65.3 million forcibly dis-
placed people worldwide in 2015, including 21.3 million refugees, 40.8
million internally displaced people (IDPs) and 3.2 million asylum see-
kers. Being forced to flee their homes due to conflict situations, man-
made or natural disasters, these people belong to the most vulnerable in
the world. Most of them seek protection and shelter in urban environ-
ments (Taubenböck et al., 2018), but there are still a large number of
refugees living in self-settled or planned camps (UNHCR, 2016). Having
arrived in a camp, refugees are generally exposed to poor living

conditions with limited access to water, nutrition, medical care and
sanitary facilities. Although they are supposed to be temporary, most of
these camps are maintained for years or even decades. Thereby complex
settlement structures emerge and originally extemporary buildings are
solidified and extended (Herz, 2006; Dalal, 2014). At the end of 2015,
about 4 million of the world's refugees gather in camps (UNHCR, 2016).
Most of these camps are managed or supported by national or inter-
national relief organizations, which supply the camps with essential
facilities for survival. For effective camp management and decision-
making, humanitarian organizations require reliable and up-to date
information about the situation on the ground (Bjørgo, 2000; UNHCR,
2000, 2005). In this context, population distribution and numbers are
crucial information for relief operations, e.g. to enhance the logistical
support of aid agencies (UNHCR, 2007; Ehrlich et al., 2009).

Remote sensing data provide independent, area-wide and up-to-date
information on the camp situation and thus can complement
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information usually collected by field observations (e.g. Schöpfer et al.,
2015). In some situations, Earth observation (EO) is the only reliable or
independent source of information. This accounts particularly in si-
tuations where the on-ground situation is unclear due to uncontrolled
growth and arrival of new migrants as well as for cases in which field
assessments are either unsafe due to conflict situations, or provide false
information due to stakeholder bias and/or politics (Bjørgo, 2000;
UNHCR, 2000).

Especially with the continuous advent of satellite sensors providing
data of increasing spatial and temporal resolution, the role of EO-based
applications for support to humanitarian relief becomes more and more
important (Kranz et al., 2010; Kuffer et al., 2016a). In case of popula-
tion estimation, the use of very high spatial resolution (VHR) satellite
data allows for the detection of single dwelling units or the built-up
area (BUA) in a camp. An approximate figure of the number of people
living in a camp can then be derived based on estimated occupancy
rates (i.e. average number of people per shelter or per sqm). Further-
more, if total counts of population are available (e.g. registration fig-
ures), such information can form the spatial base entity for population
disaggregation. In this way information on the spatial pattern of the
population (e.g. population density) and respective changes over time
can be given (e.g. Lang et al., 2010). The present study focuses on the
BUA rather than on single dwelling units. BUA is defined here as the
detailed spatial delineation of areas occupied by buildings. Thereby, the
term building refers to any type of man-made temporary settlement
structure with a roof.

1.2. Image features for Earth observation-based built-up area detection

The development of methods for the derivation of thematic land
use/land cover (LULC) information such as BUA from remote sensing
imagery has been a major research subject of the remote sensing
community in the past decades. EO data from latest VHR sensors such
as the multispectral (MS) sensors WorldView (WV) 1–4 or Pléiades
allow for LULC mapping at an unprecedented level of spatial detail.
Simultaneously, the benefits of increasing spatial resolution are asso-
ciated with an increasing mismatch between single pixels and the real
world objects they depict. Those real world objects are typically re-
presented by numerous pixels. Particularly in heterogeneous environ-
ments such as settlement areas this induces high intra-class and low
inter-class variability of the different classes in the spectral domain.
This poses challenges for an accurate classification (Blaschke, 2010). In
addition to MS data, VHR Synthetic Aperture Radar (SAR) data such as
imagery from the sensor systems TerraSAR-X (TS-X) or COSMO-Skymed
additionally exhibit new potential for accurate settlement mapping
(Taubenböck et al., 2012; Chini et al., 2009). The SAR backscatter
signal represents a complex combination of various sources, which can
provide additional information about objects on the ground due to their
distinctive backscatter signature as induced by characteristic geometric
as well as dielectric properties and surface roughness. However, being
subject to geometric perturbations due to the side looking geometry of
SAR sensors (i.e. double bounce, layover, foreshortening and sha-
dowing effects) as well as the speckle effect, the resulting imagery can
be difficult to interpret (Brunner et al., 2008; Gamba, 2013).

Recent studies on remote sensing based thematic mapping propose
several image processing concepts in order to cope with these chal-
lenges. Most of them are based on spectral-spatial homogenization
through the extraction of meaningful image features incorporating in-
formation beyond the margins of single pixels.

Aiming to capture distinct spatial grey tone dependency patterns, a
variety of studies integrate texture features into the classification pro-
cedure. A popular and approved approach for computing such measures
is the grey-level co-occurrence matrix (GLCM; Haralick et al., 1973).
GLCM texture features have demonstrated to beneficially complement
MS information in optical data (e.g. Carleer and Wolff, 2006; Pacifici
et al., 2009; Geiß et al., 2015; Kuffer et al., 2016b) as well as in single-

(e.g. Gamba et al., 2011; Ban et al., 2015; Uhlmann and Kiranyaz,
2014) and multi-polarized (e.g. Du et al., 2015; Masjedi et al., 2016;
Wurm et al., 2017) SAR backscatter information.

An additional group of image features being able to complementary
encode spectral and spatial information constitutes morphological
profiles (MPs). These kinds of features are built upon mathematical
morphology (MM) operations (Soille, 2004). MPs rely on the idea of
comprehensively describing image structures by their morphological
intrinsic characteristics exploited through sequential morphological
transformations of the image data applying a structuring element (SE)
of increasing size (Pesaresi and Benediktsson, 2001). MPs and its de-
rivatives have proven particularly effective for classification of urban
land cover in VHR MS and hyperspectral imagery (Benediktsson et al.,
2003; Fauvel et al., 2008; Tuia et al., 2009; Dalla Mura et al., 2010;
Ghamisi et al., 2015; Geiß et al., 2016b). None the less, the utility of
MPs with regard to the classification of SAR data is sparsely docu-
mented in literature. Among the few available studies, Chini et al.
(2009) assess the potential of anisotropic MPs for the classification of
urban land cover based on single polarized VHR TS-X Stripmap data
(6m spatial resolution) achieving promising accuracy levels. Du et al.
(2015) integrate MPs into an array of polarimetric image descriptors for
LULC classification based on Radarsat-2 fine quad-pol data (8 m spatial
resolution) and report a significant boost in overall accuracy. Wurm
et al. (2017) deploy MPs supplementary to texture information for the
mapping of inner urban structures, specifically informal settlements
using dual-pol TS-X Stripmap mode imagery. They conclude that MPs
computed from 6m spatial resolution imagery do not allow for a
meaningful representation of individual objects such as slum dwellings.
This indicates that a detailed extraction of temporary settlement BUA
under the consideration of MPs might require higher resolved SAR data.

A prominent methodological concept to face the challenges of VHR
remote sensing image classification is object-based image analysis
(OBIA). OBIA relies on the aggregation of pixel values to meaningful
image objects using a segmentation procedure (Benz et al., 2004;
Blaschke, 2010). An object-based representation of the imagery allows
for a straight forward regularization of the data based on common
measures of central tendency or spread (e.g. mean, median or standard
deviation). Additionally, it facilitates the spectral-spatial integration of
the pixel information (e.g. spectral values, indices and texture) with
geometric characteristics (i.e. object shape and extent) as well as object-
based contextual measures (e.g. topological relationships) from single
or multi source data into the classification procedure (Stumpf and
Kerle, 2011; Geiß et al., 2015). The integration of object-based features
calculated from a sequence of multiple hierarchical segmentation-levels
for classification has been shown to be superior to single-level ap-
proaches (Bruzzone and Carlin, 2006; Taubenböck et al., 2010). Such a
multi-level strategy on the one hand allows for more adequate object-
based feature representations of all different classification targets of
interest (e.g. building rooftops of different types and sizes) and on the
other hand for the consideration of their spatial context, as represented
by affiliated super-object information.

1.3. Studies on building extraction in temporary settlements

Emerging planned or spontaneous temporary settlements such as
refugee camps adapt to different natural, social and political conditions.
Their physical morphology differs from settlements intended to be
permanent. They are composed of small-scale ground-level dwellings of
different types (e.g. tents, containers, huts) and materials (e.g. plastic or
metal sheet, loam or wood). High temporal dynamics (e.g. due to var-
iations in population pressure), spatial limitations and haphazardly
building (e.g. due to uncontrolled population influx) typically induce
heterogeneous patterns of BUA often exhibiting high densities. These
characteristics impose specific challenges for satellite-based building
extraction with respect to temporary settlements.

A variety of methods focusing on the extraction of buildings in
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refugee camps based on VHR optical satellite imagery has already been
presented in literature, ranging from time consuming and labor in-
tensive visual image interpretation (e.g. Bjørgo, 2000; Giada et al.,
2003; Checchi et al., 2013; Spröhnle et al., 2014) to more robust and
time efficient (semi-) automated methods (e.g. Giada et al., 2003; Lang
et al., 2010; Kemper et al., 2011; Wang et al., 2015; Spröhnle et al.,
2014, 2017). Several case studies were applied to different camp types
showing promising results for computer-assisted building extraction,
including pixel-based classification (e.g. Giada et al., 2003), object-
based classification rule-sets (e.g. Lang et al., 2010; Spröhnle et al.,
2014, 2017) and approaches based on MM operations combined with
thresholding (e.g. Giada et al., 2003; Kemper et al., 2011; Heinzel and
Kemper, 2014; Wang et al., 2015).

The investigation of SAR data for building extraction in settlement
environments featuring the morphological characteristics of temporary
settlements is still in the early stages. Spröhnle et al. (2017) explore the
benefits of single polarized SAR data (i.e. a TS-X High Resolution
Spotlight image with 1.5m spatial resolution) as well as its integration
with VHR optical data for single dwelling extraction based on object-
based rule set classification schemes. Their results reveal that SAR data
proves useful especially for the detection of metal sheet dwellings.
Furthermore, they show that particularly in complex camp areas the
combined use of SAR and optical data may outperform the use of either
one of those data sets.

In contrast to previous studies on building extraction in temporary
settlements from VHR imagery our approach integrates the concepts
quoted in Section 1.2. Thereby, the combined use of VHR MS and TS-X
Staring Spotlight SAR data represents a particular novelty. The pro-
posed workflow aims at the accurate extraction of BUA by fusing re-
levant features in the feature space. In this course, the object-based
profile of local variation (OPV) is introduced for information extraction
from VHR SAR imagery and revealed to be specifically relevant. The
Multiple Correlation-Based Feature Selection (MCFS), proposed for an ef-
ficient multi-view feature selection (FS) constitutes a further contribu-
tion of this study. Our results give detailed insights on the classification
accuracy of the approach as well as the relevance of the deployed
features. The remainder of this paper is organized as follows. Section 2
provides a detailed description of the study site and the deployed data.
The related methods are pointed out in Section 3. Experimental results
are presented and discussed in Section 4. Finally Section 5 concludes
this paper and provides some research perspectives.

2. Study site and data

2.1. Study site

The Al Zaatari refugee camp is located in the Mafraq governorate in
northern Jordan, approximately 15 km from the Syrian border (Fig. 1).
It was officially opened on July 29, 2012 to host Syrian refugees fleeing
the war in Syria (UNHCR, 2014). As a result of the high population
dynamics, the physical camp structure changed over time (Dalal, 2014).
On April 07, 2014 – at satellite data acquisition time – there were ac-
cording to the UNHCR (2014) about 106,442 people registered in the
camp. At that stage, the whole camp area was characterized by build-
ings which are heterogeneous in size, orientation and materials giving
the camp a chaotic layout. Building types were mainly flat roofed,
corrugated sheet metal containers and tents, made of plastic sheets.
Building density varied all over the camp. In many areas, camp struc-
tures were strongly condensed with no spaces between the roofs.

2.2. Satellite data

With regard to the optical data, a VHR Pléiades satellite image
(Fig. 1a) acquired on April 06, 2014 was used for the analysis. The
original data set consists of a panchromatic image with 0.5m spatial
resolution as well as a 4 band multispectral (MS; i.e. blue, green, red,

near-infrared) stack with 2m spatial resolution. Preprocessing steps
applied to the Pléiades image included ATCOR-2 (Richter, 1996) at-
mospheric correction, orthorectification using a Shuttle Radar Topo-
graphy Mission digital elevation model as well as pansharpening to
0.5 m spatial resolution based on the Gram-Schmidt algorithm (Laben
and Brower, 2000).

The SAR data set (Fig. 1b) comprises a single (HH)-polarized TS-X
Staring Spotlight X-band image acquired on April 07, 2014. The scene
has been ordered in enhanced ellipsoid corrected (EEC) format, which
implies a multi-look detected scene, delivered geocoded and orthor-
ectified. This data product and the applied processing steps are de-
scribed in detail in Fritz et al. (2008). The scene has been resampled
from its original pixel spacing of 0.239m to 0.25m spatial resolution to
allow for a 4-to-1 pixel-to-pixel match with the optical scene. Both
images were co-registered considering the optical scene as reference.

2.3. Training and test data

A rigorous and unbiased statistical assessment of classification ac-
curacy (Section 3.5.3) requires accurate and representative reference
data that is spatially independent from training data (Congalton and
Green, 2008; Geiß et al., 2017). Therefore, six pairs of 200× 200m test
areas and training areas were defined (Fig. 1a, b) in a way, that i) each
pair (A–F) represents a distinct pattern of BUA (building types, mate-
rials and density) and non-BUA (soil characteristics, path way and road
infrastructure, walls and fences) and ii) the ensemble of all pairs is
representative for the whole camp.

Pair A and B are located in the unplanned older part of the camp
that is mainly characterized by close standing flat roofed sheet metal
containers of rectangular shape, in many cases partly covered with
blankets. As a result of self-settlement of refugees in the early stages of
the camp, this district shows an unplanned layout and high dwelling
density (Dalal, 2014). The pairs C–F are chosen from the newer parts of
the camp, which originally was planned with a well-structured pattern
of blocks of tents and containers with regular spaces between the
dwellings. However, as the influx of refugees increased, they were
spontaneously filling the spaces between residential blocks and infra-
structure (Dalal, 2014). While the pairs D and F are characterized by a
mixture of containers and groups of tents (mainly hexagonal UNHCR
tents made of plastic sheets), pair E is primarily composed of con-
tainers. Pair C is dominated by containers in the northern part and
UNHCR tents in the southern part (Fig. 1).

Since accurate and up-to-date ground truth was lacking, test data
was extracted within the defined test areas by means of visual image
interpretation of the pan-sharpened Pléiades image. Each test area
comprises 160,000 pixels. All together the test data consists of 227,323
BUA and 732,677 non-BUA pixels (Fig. 1c). The training areas served
for the generation of a pool of labelled segments used for the sampling
of training data for classification model learning (Section 3.4).

3. Methods

The approach we propose (Fig. 2), addresses the specific challenges
of detailed BUA detection in complex temporary settlements from VHR
MS and SAR data and involves a multi-level image segmentation pro-
cedure (Section 3.1), multi-level feature calculation (Section 3.2),
MCFS (Section 3.3) and supervised classification deploying a Random
Forest (RF) classifier (Section 3.4). The setup pursued within the per-
formed classification experiments is described in Section 3.5 including
i) feature grouping in order to explore the benefits of the considered
feature types as well as to evaluate the proposed MCFS approach, ii) a
proper sampling scheme for the collection of independent training data
and the quantification of the influences of training data set sizes on the
classification results and iii) a rigorous accuracy assessment taking class
imbalance into account.
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3.1. Image segmentation and multi-level concept

In order to capture the spectral-spatial heterogeneity of dynamic
settlement environments, a sequence of multiple hierarchical segmen-
tation levels is created based on the MS imagery. Thereby, segmenta-
tion at a generic segmentation level l divides the image into Nl objects
On

l(n=1,2,…,Nl). The multiple segmentation levels comply with an
unambiguous hierarchy by incorporating the following relation:

⋃ =
⊆

+

+
O O ,

O O
n
l

m
l 1

n
l

m
l 1 (1)

which ensures that a considered object l is included in only one object
at level l+1. This concept is consistent with other approaches that
integrate super-segment information (e.g. Bruzzone and Carlin, 2006;
Geiß et al., 2016a).

We deploy three hierarchic segmentation levels in order to ex-
haustively account for the BUA and its non-BUA environment (Fig. 3).

Fig. 1. Study site, data sets and deployed 200×200m test and training areas a) Pléiades satellite data with 0.5m spatial resolution acquired on 06/04/2014, b) TerraSAR-X Staring
Spotlight satellite data with 0.25m spatial resolution acquired on 07/04/2014, c) detail view on the test areas (A-F) and the extracted test data (BUA in red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Flowchart of the BUA extraction methodology and experiments.
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The finest level subsequently denoted as l represents smallest real world
objects (e.g. small buildings or homogeneous roof parts) and tends to be
over-segmented with regard to medium and large BUA patches. Seg-
mentation level l+1 represents medium size real world objects (e.g.
medium size buildings and BUA patches). The coarsest segmentation
level l+2 represents large real world objects (e.g. large buildings and
BUA patches) and tends to be slightly under-segmented with regard to
small and medium size BUA patches. Respecting the associated classi-
fication procedure (Section 3.4), we deploy the objects of the finest
level l as base-entities. In this way, computation times are kept con-
siderably lower compared to a pixel-based classification, while the
details of small-scale settlement structures imaged in VHR data, are still
captured.

For the creation of such a hierarchical network of segmentation
levels we apply a bottom-up region-merging algorithm i.e. the Fractal
Net Evolution Algorithm (FNEA; Baatz and Schäpe, 2000). Starting
from individual pixels, the FNEA consecutively merges adjacent regions
as long as the user-defined criteria for the maximum allowed hetero-
geneity of the resulting image segments are not exceeded. These criteria
are expressed by the free heterogeneity weight parameters scale (S),
color (hc) and shape (hs) with the shape parameter integrating
smoothness (hss) and compactness (hsc). Thereby, larger values of S
induce larger within segment heterogeneities, generally leading to
larger segments (Benz et al., 2004).

After preliminary trials, we carried out a multi-segmentation pro-
cedure using the MS bands with the following scales: Sl=25,
Sl+1=50, Sl+2=75. In accordance with other object-based land cover
studies (e.g. Martha et al., 2011; Geiß and Taubenböck, 2015; Geiß
et al., 2016a) we set up our FNEA procedure taking into account that, in
contrast to natural features, man-made features such as buildings or
roads are characterized by distinct shape and size properties. Corre-
spondingly, we place emphasis on the shape heterogeneity rather than
on spectral heterogeneity and use the following parametrization:
hs=0.7; hc=0.3; hss=0.5; hsc=0.5. Several strategies for an auto-
mated and objective identification of optimized segmentations are
proposed in literature (Espindola et al., 2006; Esch et al., 2008; Drăgut
et al., 2010; Martha et al., 2011; Geiß et al., 2016a). Nonetheless, nu-
merous studies have shown that accuracies of object-based supervised
classifications are less dependent on segmentation (Belgiu and Drăgut,
2014), and indicate that over-segmentation is generally preferable (e.g.
Stumpf and Kerle, 2011; Johnson and Xie, 2013; Rougier et al., 2016).
Thus, in order to keep computational costs low, we applied segmenta-
tion without an extensive optimization. The choice of most adequate
feature representations within the range of the applied segmentation
levels (l, l+1 and l+2) is subsequently addressed within the FS
procedure (Section 3.3).

3.2. Feature calculation

The objects defined by segmentation level l are characterized by

means of an exhaustive set of descriptive features being calculated
based on the multiple segmentation levels associated to the MS and SAR
imagery (Table 1). Accordingly, for a generic object Ol of base entity
level l its resulting affiliated stacked multi-level feature vector F(Ol) is
composed of three hierarchic single-level related sub-vectors f of N
features and can be written as:

= =
+

=
+

=F O f O f O f O( ) ( ( ) , ( ) , ( ) ).l
n
N l

n
N l

n
Nl

1
1

1
2

1 (2)

Overall, N=179 different features are calculated on the three
segmentation levels resulting in a total vector of NF(Ol) = 537 features.
Thereby, the chosen image descriptors aim to cover the feature types
typically used in state-of-the art LULC studies based on VHR data
(Section 1.2). Among these, metrics of central tendency, spread, band
ratios, metrics capturing the relationship of a considered object to its
adjacent neighbor objects, texture features, geometric features as well
as a sequence of object-based representations of pixel-based moving
window (MW) operators was computed (henceforth denoted as Moving
Window Features (MWF)).

3.2.1. VHR multispectral features
With regard to the optical data, spectral metrics assessing the ob-

ject-based central tendency and spread (i.e. mean, median, standard
deviation and interquartile range (IQR)) of the MS bands as well as their
first 3 principal components (PCs; Bishop, 2006) are extracted. In addi-
tion a pre-defined brightness layer (Bn) is calculated as the sum of the
MS band values Ci(v) divided by the number of bands nv:

∑=
=

Bn
n

C1 .
v i

n

i v
1

( )

v

(3)

Bn was further used in order to compute the maximum difference
between the available MS channels relative to Bn (MaxDiff; Stumpf and
Kerle, 2011) as well as object-based rotation-invariant GLCM texture
measures (Haralick et al., 1973; Trimble, 2014). The object-based mean
share of the single MS bands compared to the sum of all MS bands is
calculated as follows:

=
∑ =

Sh
C

C
.C

i v

i
n

i v

( )

1 ( )
i v v( )

(4)

For a more in depth conception of the spatial context of image-ob-
jects, two relational features, reflecting the mean boarder weighted dif-
ference to darker and brighter adjacent neighbors (∆L

d and ∆L
b respectively)

with regard to the MS-bands and the first 3 PCs are determined.
Considering an image layer L, ∆L

d and ∆L
b of an arbitrary object Osl

related to a segmentation level sl with the darker neighbors N
O
d

sl and the
brighter neighbors N

O
b

sl are computed as follows:

∑∆ = −
∈

O
w

w c O c n( ) 1 (| ( ) ( )|)L
d sl

n N
n L

sl
L

Osl
d (5)

Fig. 3. Hierarchical creation of multiple segmentation levels.
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Table 1
Object-based features. The subscripts indicate the information layers the respective features were calculated on. The numbers of considered features are denoted in brackets.

Type (number) Features Comment/reference

VHR Multispectral (115) Spectral (51) Central tendency, spread & ratios
(37)

MeanR, G, B, NIR, 1st PC, 2nd PC, 3rd PC, Brightness, MaxDiff

MedianR, G, B, NIR, 1st PC, 2nd PC, 3rd PC

Standard deviationR, G, B, NIR, 1st PC, 2nd PC, 3rd PC

IQRR, G, B, NIR, 1st PC, 2nd PC, 3rd PC

Mean share of R,G,B, NIR Eq. (4)
Mean normalized green blue index (G− B) / (G+B)
Mean normalized difference vegetation index Rouse et al., 1974
Mean normalized difference water index McFeeters, 1996

Relational (14) Mean w. diff. to darker neighb.R, G, B, NIR, 1st PC, 2nd PC, 3rd PC Eq. (5)
Mean w. diff. to brighter neighb.R, G, B, NIR, 1st PC, 2nd PC, 3rd PC Eq. (6)

Texture (8) GLCM (8) Angular 2nd momentBrightness Haralick et al., 1973
ContrastBrightness
DissimilarityBrightness
Standard deviationBrightness
MeanBrightness
HomogeneityBrightness
EntropyBrightness
CorrelationBrightness

Geometry (14) Extent (6) Area
Perimeter
Width
Length
Length/width
Area/perimeter

Shape (8) Asymmetry Trimble, 2014
Shape index
Elliptic fit
Rectangular fit
Compactness
Density
Border index
Roundness

Moving window (42) OMPs (40) OpeningB Eq. (7); Geiß et al., 2016b
ClosingB
Opening by top-hatB
Closing by top hatB

Edges (2) Mean bright Lee Sigma edgesB Lee, 1983
Mean dark Lee Sigma edgesB

VHR SAR (64) Intensity (6) Central tendency & spread (4) MeanSAR Intensity

MedianSAR Intensity

Standard deviationSAR Intensity

IQRSAR Intensity

Relational (2) Mean w. diff. to darker neighb.SAR Intensity Eq. (5)
Mean w. diff. to brighter neighb.SAR Intensity Eq. (6)

Texture (8) GLCM (8) Angular 2nd momentSAR Intensity Haralick et al., 1973
ContrastSAR Intensity

DissimilaritySAR Intensity

Standard deviationSAR Intensity

MeanSAR Intensity

HomogeneitySAR Intensity

EntropySAR Intensity

CorrelationSAR Intensity

Moving window (50) OMPs (40) OpeningSAR Intensity Eq. (7); Geiß et al., 2016b
ClosingSAR Intensity

Opening by top-hatSAR Intensity

Closing by top-hatSAR Intensity

OPV (10) Local coefficient of variationSAR Intensity Eqs. (8), (9)

(Total: 179) R= red; G=green; B=blue; NIR=near-infrared; PC=principal component
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cL denoting the grey-level value and wn being the common border
between the object Osl and an adjacent object n.

A compilation of geometric features includes several metrics cap-
turing an objects' spatial extent and shape (Table 1).

Due to the fact that dwelling materials such as plastic as well as
sheet metal exhibit a relatively high contrast to the background in the
blue region of the electromagnetic spectrum (Heinzel and Kemper,
2014), optical MWF were calculated based on the blue band of the MS
image. This characteristic was also utilized in previous shelter extrac-
tion studies by Jenerowicz et al. (2011) and Spröhnle et al. (2017).
Optical MWF contain set-theory based MM as well as edge-extraction
information. With regard to the MM-features, we deploy object-based
MPs (OMPs) following the concept recently introduced by Geiß et al.
(2016b). We employ the MM operators opening (OP), closing (CL),
opening by top-hat (OTH) and closing by top-hat (CTH; Soille, 2004). A
sequence of squared shaped MWs of increasing size (i.e. 3× 3, 5×5,
7× 7, 9×9, 11×11, 13×13, 15×15, 20×20, 25× 25, and
30×30 pixels) is utilized as SE. We chose these sizes in consideration
of the spatial resolution of the imagery as well as the morphology of
temporary settlement environments. Ranging from 1.5 m to 15m, they
are able to generically model the size of the heterogeneous occurring
objects. In a next step resulting grey-level values are aggregated on
corresponding segmentation levels by applying the mean function. Ac-
cordingly, the full OMP assigned to a generic object Ol of base entity
level l can be written as:
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(7)

thereby, k reflects the index of the applied MW sizes from 1 to K, i the
considered segmentation levels and x the object-based mean values of
the corresponding pixel values resulting from OP, CL, OTH and CTH.

Regarding the edge information, two edge layers are generated by
applying the Sigma filter, an edge preserving smoothing filter in-
troduced by Lee (1983). The first layer includes extracted edges of
objects brighter than their background, whereas the second layer in-
cludes edges of objects darker than their background. Based on the
sigma probability of the Gaussian distribution, the Sigma filter smooths
variations in the image by replacing the center pixel of a MW with the
average of those pixels within a predefined standard deviation range
(Δσ). Neighborhood pixels outside Δσ are excluded from the calculation
of the sample mean. As a result, depending on Δσ, edges and linear
features are preserved while noise is smoothed out (Lee, 1983). Within
the present study Δσ was set to a±5 standard deviations, enforcing
strong edge extraction.

3.2.2. VHR SAR features
Consistently with the optical features, the set of SAR features

comprises object-based metrics of central spread and tendency, rela-
tional context features, texture and MWF (Table 1). Thereby, the cal-
culation is based on the SAR backscatter intensity. With regard to the
MWF, the difference in spatial resolution between both images (Section
2.2) is considered by doubling the MW sizes (i.e. 6× 6, 10×10,
14×14, 18× 18, 22×22, 26×26, 30× 30, 40×40, 50×50, and
60×60 pixels), so that resulting MWs cover the same spatial extent. In
contrast to the set of optical MWF, we compute an object-based profile of
local variation (OPV) from the SAR intensity image based on the local
coefficient of variation (CoV) instead of Lee-Sigma edges. For an arbi-
trary center pixel c CoV is defined by the standard deviation and the
mean of the grey-level values within a deployed MW (Eq. (8)).

=CoV σ
μc

c

c (8)

An entire OPV related to a generic object Ol of base entity level l is
defined as:

= ∈ + +=OPV O x O i l l l( ) ( ( ) ); [ , 1, 2]l
CoV

i
k
K

1 (9)

k reflects the index of the applied MW sizes from 1 to K, i the
considered segmentation levels and x the object-based means of the
CoV.

Considering a single SAR scene the CoV is directly proportional to
the speckle divergence (Esch et al., 2010, 2012), which has already been
shown highly beneficial for the delineation of urban BUA from TS-X
imagery recorded in coarser spatial resolution imaging modes.

3.3. Features subset selection

High dimensional feature sets typically exhibit a large amount of
redundancy, often show high inter-correlations and may be affected by
the Hughes Phenomenon (Hughes, 1968). Furthermore, such data is
likely to contain irrelevant noise inducing features. At the same time
the susceptibility to learn overfitting classification models increases
with dimensionality. A FS, filtering out the least promising features may
attenuate the aforementioned problems. Thereby, more compact fea-
ture sets facilitate data interpretation, reduce data storage requirements
and provide faster and more cost-effective models (Guyon, 2003). Su-
pervised FS methods can be categorized into filters, wrappers and em-
bedded approaches. Filters assess the relevance of a feature only based
on the intrinsic characteristics of the data (Duch, 2006). Wrappers in-
stead, iteratively evaluate feature sets by using accuracy estimates
provided by the actual classification algorithm (Kohavi and John,
1997). Embedded methods are specific to given classification algo-
rithms, e.g. Recursive Feature Elimination for Support Vector Machines
(SVM; Guyon et al., 2002) and perform FS during the training process.
Comparing the three FS families, filters are classifier independent and
in general computationally simpler and faster than wrappers or em-
bedded methods, since they do not incorporate classifier learning
(Kohavi and John, 1997; Lal et al., 2006).

Therefore, we deploy a multivariate filter method for dimension-
ality reduction, namely the Correlation-Based Feature Selection (CFS)
method introduced by Hall (1999, 2000). CFS has already shown pro-
mising results within remote sensing data based classification applica-
tions, where CFS lead to good classification results with relatively small
feature sets compared to other FS approaches, e.g. in Pal and Foody
(2010), Geiß et al. (2015) and Ma et al. (2015). Rather than filter
methods evaluating individual features, CFS evaluates individual sub-
sets of features based on an evaluation criterion that favors subsets with
a high average feature-class correlation (Cfc ) and low average feature-
feature inter-correlation (Cff ):

=
+ −

m
kC

k k k C( 1)
S

fc

ff (10)

mS being the merit of subset S and k its number of features. Cfc and Cff
are calculated by using the entropy based symmetrical uncertainty (Hall,
2000). The subset space is searched using a best-first algorithm (Kohavi
and John, 1997) for speeding up computation performance.

The consideration of features of different types (e.g. spectral, tex-
tural and geometric features) as well as their calculation from different
data sources (e.g. imagery acquired by different sensor types) increases
the complexity of the entire feature space by imposing complementary
subspaces (also referred to as views) with a particular physical meaning
and specific statistic characteristics. In general such subspaces show a
high heterogeneity and rather low redundancy among each other,
whereas features within a certain sub-feature space are likely to be
homogeneous and to show high redundancy (Chen et al., 2014, 2017).

In order to evenly take into account different views imposed due to
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the different feature and sensor types in our study in a straightforward
and efficient way, we propose a modification of CFS, we call multiple
CFS (MCFS). MCFS decomposes the entire stacked feature vector into
multiple predefined typological sub-feature spaces (fT) and applies CFS
on these fT. Thereby, we assume that a considered fT implies homo-
geneous orders of scales with regard to feature manifestations and
feature-class correlations. The stacked vector of the resulting typolo-
gical feature subsets then constitutes the feature set for classifier
learning. For N arbitrary fTi i∈ [1,…,N] forming the entire feature
space F, the resulting subset for classificationMCFS(F) can be defined as
follows:

= …MCFS F CFS CFS CFS( ) ( , , , )f f fT T TN1 2 (11)

with CFSfTi denoting the CFS subsets of fTi. An additional effect of the
MCFS strategy are less computational costs due to a reduction of the
feature subset search space, arising from less possible feature combi-
nations. The decomposition scheme applied within this study is item-
ized in Table 2.

3.4. Classification

Random forest (RF), a non-parametric decision-tree based ensemble
learning algorithm, was chosen for classification (Breiman, 2001). RF is
able to cope with the notable amount of redundancy as well as the high
dimensionality inherent in the feature sets (Geiß et al., 2015; Wurm
et al., 2017). These are particularly induced by the consecutive window
sizes of the MWF and the multi-level feature calculation approach of
our methodology (Dalla Mura et al., 2010; Geiß et al., 2016b). In order
to minimize the correlation between the trees of the ensemble, RF
grows each tree on a bootstrapped sample of the input data at each
node affiliated with a new random subset of features drawn from the
input feature space. The final predictions are determined by a majority
vote of the single trees. In this manner RF attains accurate general-
ization abilities, robustness to noise as well as computational efficiency
(Breiman, 2001; Fernandez-Delgado et al., 2014). The two tuning
parameters to be defined setting up a RF are the number of trees
forming the ensemble (ntree) and the number of features randomly se-
lected at each node (mtry). We set ntree to 500 in order to provide a
reliable error estimate, while maintaining the computation times in a
reasonable range. This is in a good agreement with the RF parameter
study performed by Genuer et al. (2008). mtry is constantly set to p (p

denoting the number of input features), which generally yields near
optimum classification results (Genuer et al., 2008).

3.5. Experimental setup

3.5.1. Feature grouping
To assess the added value in classification accuracy attained

through the multi-level approach as well as through the integration of
additional feature types, the classification procedure was carried out
and evaluated for six different feature groups composed ensuing from a
baseline feature set (BL). Thereby, BL includes the features typically
employed in the object-based analysis of VHR MS satellite imagery, i.e.
spectral, geometry and texture features (e.g. Stumpf and Kerle, 2011;
Ma et al., 2015; Geiß et al., 2015; Leichtle et al., 2017a). Then, MWF
and SAR features are added in two steps. Results are compared to the
outcomes of the CFS and MCFS. The feature sets applied for classifi-
cation are listed in Table 2, SL indicating the involvement of single-
level and ML indicating the involvement of multi-level feature re-
presentations.

3.5.2. Sampling of training data
An independent training data pool of 5700 labelled level l segments

(i.e. 2750 BUA and 2750 non-BUA samples) which are equally dis-
tributed across the six training areas (A-F; Section 2.3; Fig. 1) served for
a random sampling of training data. The implemented sampling pro-
cedure draws the training data stratified with regard to the training
areas (spatial stratification) as well as to the a priori class probabilities
(land cover related stratification). The impact of the reduction of prior
knowledge on classification accuracy was assessed by incrementally
decreasing the amount of training samples. This was done with the
intention to prospectively reduce time consuming and economically
expensive reference data acquisition. Hence, ensuing from a maximum
size (smax) of 5004 samples training set sizes s amount to 101.90, 101.80,
…, 101.00, 100.75, 100.50, 100.25 and 100.05% of smax resulting in training
data sets of 15 different sizes. Within an iteration of classifications
based on the consecutive sizes of training data it was ensured that each
set of training samples s is also contained in the corresponding sub-
sequent training sets with a larger number of samples. In this manner an
unbiased quantification of the effect of training set size on classification
performance is provided.

3.5.3. Accuracy assessment
The accuracy of remote sensing data-based thematic maps is gen-

erally evaluated by comparing the results of the automated classifica-
tion with reference data meaning to represent reality (Congalton and
Green, 2008; Foody, 2002). For binary classifications True Positive (TP),
False Positive (FP), True Negative (TN) and False Negative (FN) values are
determined allowing for the calculation of several well-established ac-
curacy measures such as Precision (PR, Eq. (12)), Recall (RC, Eq. (13)),
Specificity (SP, Eq. (14)), Overall Accuracy (OA, Eq. (15)), F1-score (F1,
Eq. (16)) as well as Cohen's Kappa Coefficient (κ, Eq. (17); Cohen, 1960),
which are examined in this study. Additionally, we calculate the True
Skill Statistic (TSS, Eq. (18); Allouche et al., 2006). Unlike κ, TSS is
mostly insensitive to class-imbalance, which is usually exhibited for
settlement areas (Klotz et al., 2016; Leichtle et al., 2017b) and also
existent within the present data (Section 2.3). Accuracy is assessed
based on the test data introduced in Section 2.3 as reference.

=
+

PR TP
TP FP (12)

=
+

RC TP
TP FN (13)

=
+

SP TN
FP TN (14)

Table 2
Composition of feature sets applied for classification. Subscripts denote included feature
types. For details on the different features and feature types see Section 3.2.

Feature sets: Level Features

SLBL l MSSpectral, MSGeometry, MSTexture
MLBL All MSSpectral, MSGeometry, MSTexture
SLBL, MWF l MSSpectral, MSGeometry, MSTexture, MSMWF

MLBL, MWF All MSSpectral, MSGeometry, MSTexture, MSMWF

SLBL, MWF, SAR l MSSpectral, MSGeometry, MSTexture, MSMWF, SARAll

MLBL, MWF, SAR All MSSpectral, MSGeometry, MSTexture, MSMWF, SARAll

CFS All CFS(All)

MCFS All CFS(MSSpectral/Central tendency, spread and ratios),
CFS(MSSpectral/Relational),
CFS(MSGeometry),
CFS(MSTexture),
CFS(MSMWF),
CFS(SARIntensity/Central tendency, spread and ratios),
CFS(SARIntensity/Relational),
CFS(SARTexture),
CFS(SARMWF)

SL= single-level feature set (based on segmentation level l);
ML=multi-level feature set (based on all segmentation levels);
BL= baseline feature set
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4. Results and discussion

4.1. Classification results

4.1.1. Overall evaluation
Fig. 4 depicts the mean classification performances (Fig. 4a: κ; b:

TSS) over 25 independent runs and corresponding standard deviations
based on the different applied feature sets (Table 2) as functions of the
number of input training samples. The legend indicates the feature set
composition as well as the number of underlying features. Considering
the FS based classification results (i.e. CFS and MCFS) mean feature
subset sizes of the 2508 training sample trials and respective standard
deviations are itemized. In general, it can be observed that mean ac-
curacy values increase with an increasing number of training samples.
Thereby, the slope of the curves decreases, reflecting a proceeding sa-
turation with regard to gains in classification accuracy. Simultaneously,
standard deviations decrease, which indicates that the models become
more robust. Finally all models culminate in excellent accuracy values
ranging from 85.5% (SLBL) to 89.0% (MLBL, MWF, SAR) in terms of mean κ
and 87.2% (SLBL) to 90.4% (MCFS and MLBL, MWF, SAR) in terms of mean
TSS. The functions, of the different feature sets highlight that adding of
MS MWF as well as the integration of SAR features induces a boost with
regard to achievable classification accuracies. In addition, when com-
paring SL feature sets with their ML counterparts it can be seen that the
latter achieve better results. This demonstrates the benefits of multi-
level feature representations for classification and is in accordance with
the findings of previous studies (e.g. Geiß et al., 2016a; Johnson and
Xie, 2013; Bruzzone and Carlin, 2006). With regard to the feature set
MLBL, MWF, SAR, however, a relatively large sample (> 1584 samples) is

required until this effect occurs. MLBL performs best with respect to
very small training set sizes (< 276 samples) and achieves e.g. a mean κ
value of 81.1% and a mean TSS value of 82.7% already with 84 sam-
ples.

Fig. 4 further reveals that surpassing an amount of 1584 training
samples, MLBL, MWF, SAR and the MCFS subsets outperform the other
feature sets. From that point on the MCFS feature subsets attain nearly
the same accuracy values as MLBL, MWF, SAR with regard to κ and equal
or slightly better accuracy values considering TSS. Thereby MCFS de-
ploys< 20% of the amount of features than MLBL, MWF, SAR. E.g.,
training sets containing 2508 samples affiliated with the MLBL, MWF, SAR

feature set result in a mean κ value of 88.1% and a TSS value of 89.6%
with 537 features, while MCFS performs with a mean κ value of 87.8%
and a mean TSS value of 89.6% with a mean size of 101 (± 5) features.
This corroborates the ability of the MCFS approach for selecting subsets
containing the features most relevant for classification.

Comparing the results of the two FS approaches, MCFS feature
subsets outperform the CFS feature subsets with regard to mean κ and
mean TSS. Even so, CFS throughout provides fairly good accuracy with
a remarkably small number of features (see also Section 4.2). In order to
get further information on the potential of the SAR features we also
evaluated the results of classifications based on training sets affiliated
with the ML SAR features only (Fig. 5). Trials with 2508 training
samples resulted in mean κ of 63.3% (±0.5) and mean TSS of 70.1%
(±0.5).

4.1.2. Test area-specific evaluation
The results of a test area specific evaluation of the classification

accuracies achieved by means of 2508 training samples affiliated with
the ML optical features, the ML SAR features, all features together as
well as the MCFS subsets are shown in Fig. 5. The plot reveals that the
magnitudes of the multi sensor accuracies are mainly driven by the MS
features. Additionally, it demonstrates that not all test site specific ac-
curacies equally benefit from the integration of SAR features. The same
accounts for the drawing of MCFS feature subsets.

While both, the additional integration of SAR features and the use of
MCFS subsets positively influence the accuracy values for test areas A
and B, it is apparent that the high accuracy values for test areas C–F can
be simply reached by the optical image information. Overall, however,
MLBL, MWF, SAR and MCFS perform best.

Fig. 4. κ (a) and TSS (b) classification accuracies of the RF classifier trained on six different feature groups (Table 2) as well as the results of the CFS and MCFS approach as a function of
the number of samples. The plots highlight the mean accuracy values over 25 independent runs of the considered classification settings and respective standard deviations. Abscissae are
scaled logarithmically.
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In order to provide additional findings on the relationship between
distinct BUA patterns within the Al Zaatari camp, classification accu-
racy and the amount of training data, Fig. 6 shows the mean accuracies
(Fig. 6a: κ; b: TSS) as well as respective standard deviations for 25 in-
dependent MCFS trials as a function of training set sizes assessed for the
different test areas (A–F) separately. Correspondingly, Table 3 itemizes
the mean accuracy values and standard deviations for 25 MCFS clas-
sification runs with a training set of 2508 samples. Herein accuracy
values for the conjoint evaluation and for each test area are listed se-
parately. The classification result holding the highest κ value of these
runs is visualized in Fig. 7 by means of spatially distributed TPs, FPs,
TNs and FNs. The figures reveal that the test areas A and B were clas-
sified best attaining κ and TSS values beyond 90.0%. These test sites

represent the old part of the camp with high dwelling densities (mainly
close standing containers, dusty tents and tarpaulins).

Having a closer look at the MS image (Fig. 1c), it is apparent that
there are three main factors influencing the classification result:
Dwelling density, dwelling material and soil properties. The test areas
with the highest accuracy values (A, B and E) are mainly characterized
by sheet metal containers, whereas areas with lower accuracy rates are
either partly dominated by tents (as in case of C, southern part) or
showing a mixture of containers and tents (D and F). Furthermore, test
areas C and D show a bright soil type leading to less contrast between
dwellings and the background and thus causing misclassifications be-
tween these classes (Fig. 7).

4.2. Insights on selected feature subsets

Fig. 8 shows the relationship between the sizes of the feature subsets
resulting from the application of CFS and MCFS and the number of
input training samples. CFS feature subsets constantly contain less than
a mean of 32 (± 5) features (i.e. 5.9% of the input feature set). MCFS
feature subsets increase continuously until a plateau is reached at 504
features. Henceforth, mean feature subset sizes stabilize remaining in a
range between 93 (± 6) and 103 (± 4) features (i.e. between 17.2%
and 19.3% of the input feature set). For small training sets with ≤537
samples (i.e. the total amount of input features; typically referred to as
‘small n large p scenario’), which are challenging for some classifiers
(Trunk, 1979), both, MCFS as well as CFS almost maintain the resulting
number of features smaller than the number of training samples.

Besides the sizes of the subset, we also examined their composition
in order to determine the features of most relevance for the temporary
settlement classification. A look inside the MCFS subset of an input
training set reveals the features of the considered types most correlating
with the target classes while exhibiting relatively low feature-feature
inter-correlations (Section 3.3). Fig. 9 illustrates the features chosen by
MCFS in>50% of 25 independent FS trials based on 2508 randomly
drawn samples (Section 3.5.2) and corresponding to the classification
accuracies itemized in Table 3 (resulting in a mean overall κ and TSS
accuracy value of 87.8% and 89.6% respectively). We assume that the
numbers of choices of the ascertained features reflect their impact on
the classification accuracy and therefore can be seen as a measure of

Fig. 5. Comparison of TSS accuracy values achieved with 2508 training samples based on
all optical features (MLBL, MWF), all SAR features (MLSAR), all optical and SAR features
together (MLBL, MWF, SAR) as well as the MCFS subsets. The bars depict mean TSS values
over 25 runs, the error bars indicate corresponding standard deviations.

Fig. 6. κ (a) and TSS (b) classification accuracies of the RF classifier trained on the MCFS feature subsets as a function of the number of samples for the different test areas (A–F). The
colored crosses highlight the mean accuracy values over 25 independent runs of the considered classification settings. The error bars depict respective standard deviations. Abscissae are
scaled logarithmically.
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importance. First, it can be stated that features calculated based on all
considered segmentation levels are selected. Additionally it can be
noticed that various features evolve their relevance specifically on
certain segmentation levels.

VHR MS first order spectral measures of the 2nd PC of the MS bands
as well as the NDVI were chosen most often from the group of MS
central tendency spread and ratios and turn out to be relevant at all
segmentation levels. Large rates of choice for 2nd PC features out of the
group of relational image descriptors approve its high correlation with
the BUA class. Furthermore the blue channel spectral information

shows up to be notably relevant (median, standard deviation, mean
weighted difference to darker neighbor). This is in line with the findings of
previous shelter extraction studies where especially the short wave
region of the optical electromagnetic spectrum proved beneficial for
refugee camp shelter detection (e.g. Heinzel and Kemper, 2014;
Jenerowicz et al., 2011; Spröhnle et al., 2017). Regarding the MS tex-
ture measures, GLCM mean is identified to be particularly distinctive.
Within the group of geometry features the extent measures area, length
as well as the area to perimeter ratio have high numbers of choices across
all segmentation levels. The shape measures shape index and density are

Table 3
Mean accuracies [%] over 25 classification runs obtained for all test areas together as well as for the single test areas separately with an amount of 2508 training samples affiliated with
MCFS feature subsets. Corresponding standard deviations are shown in brackets.

Test area Accuracy measures [%]

PR RC SP OA F1 κ TSS

All 88.1 (± 0.6) 93.5 (± 0.5) 96.1 (±0.2) 95.5 (±0.1) 90.8 (±0.2) 87.8 (± 0.3) 89.6 (± 0.3)
A 93.5 (± 0.6) 96.4 (± 0.5) 94.0 (±0.6) 95.2 (±0.2) 94.9 (±0.2) 90.3 (± 0.4) 90.5 (± 0.4)
B 94.1 (± 0.7) 95.0 (± 0.7) 97.6 (±0.3) 96.8 (±0.1) 94.5 (±0.2) 92.3 (± 0.3) 92.6 (± 0.4)
C 77.7 (± 1.2) 89.3 (± 0.9) 95.9 (±0.3) 95.0 (±0.2) 83.1 (±0.5) 80.2 (± 0.6) 85.2 (± 0.7)
D 80.0 (± 0.8) 91.0 (± 0.8) 94.5 (±0.3) 93.8 (±0.2) 85.1 (±0.3) 81.2 (± 0.4) 85.5 (± 0.6)
E 85.9 (± 0.8) 93.2 (± 0.7) 96.7 (±0.2) 96.1 (±0.1) 89.4 (±0.4) 87.0 (± 0.4) 89.9 (± 0.6)
F 85.7 (± 1.2) 89.4 (± 0.8) 97.3 (±0.3) 96.1 (±0.2) 87.5 (±0.5) 85.1 (± 0.6) 86.6 (± 0.5)

PR= Precision; RC=Recall; SP= Specificity; OA=Overall Accuracy; F1= F1-Score; κ=Kappa Coefficient; TSS= True Skill Statistic.

Fig. 7. Classification result in terms of TPs, FPs, TNs and FNs (see legend) for the six test areas with the highest overall κ value (κ=88.4%) obtained out of 25 classification runs with
2508 training samples affiliated with MCFS feature subsets and corresponding accuracy measures (κ, TSS and F1). Conjoint accuracy measures for all test areas (A–F) are given at the
bottom left.
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revealed to contribute especially on the coarser segmentation levels
l+1 and l+2. This is reasonable, because these levels feature less
over-segmentation (Section 3.1) and thus exhibit a more precise deli-
neation of the actual buildings or building patches. From the group of
optical MWF the mean bright Lee Sigma edges and the OTH OMP show a
substantial importance.

Regarding the SAR intensity measures of central tendency and
spread, median, standard deviation and IQR show a particular relevance.
The mean difference to darker neighbors based on the levels l an l+1 is
chosen in each of the 25 runs. GLCM angular 2nd moment as well as
GLCM entropy stands out from the SAR texture features. The OPV as well
as the CTH OMP are chosen most often from MWF.

Independently from the satellite sensor, measures of spread are
particularly relevant on the two coarser segmentation scales l+1 and
l+2. That is plausible, since coarser segment scales obviously exhibit
wider ranges of inner segment heterogeneities making such measures
more distinctive.

5. Conclusion and outlook

This study presents a generic object-based workflow for feature
calculation, data fusion and classification within a machine learning
framework. The approach was applied for detailed BUA mapping in a
complex temporary settlement using VHR multi-sensor (MS and SAR)
satellite imagery. Spectral-spatial descriptive features calculated on
multiple segmentation levels are considered for learning a RF classifier.
In this course, the OPV was introduced for information extraction from
VHR SAR data and MCFS was proposed for the selection of the most
relevant subset out of the entire feature vector. Attaining accuracy
values beyond 80% in terms of κ and TSS, even in complex settlement
configurations, the experimental results prove the potential of the
method. Thereby, the capability of RF to cope with high dimensional
data has been verified. Running classifications on different feature
groups (i.e. BL, MWF and SAR), it has been shown that each of the
applied feature groups is gainful with regard to resulting accuracies.
The same accounts for the ML strategy for the calculation of descriptive
features which outperforms the use of a single segmentation level. The
experimental results further revealed that the MCFS feature subsets
achieve similar high classification accuracy values as the full feature
vector. The examination of the relationship between the number of

Fig. 8. Sizes of CFS and MCFS feature subsets as a function of the number of training
samples given in absolute numbers (left ordinate) and in percentage (right ordinate). The
cross-marks depict mean values over 25 independent runs; the bars indicate corre-
sponding standard deviation values. The abscissa is scaled logarithmically.

Fig. 9. Feature importance analysis: Features selected by MCFS in>50% of 25 runs (i.e. ≥13 times) with 2508 training samples. The overall bar length indicates the overall number of
choices of a feature without discriminating between the underlying segmentation levels. The colors of the stacked bars depict underlying segmentation levels (i.e. l, l+1, l+2; see legend
on top). The actual number of choices of the single features is given in white color in the center of the single bars. [.] indicates the kernel size corresponding to a MWF.
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training samples and input features showed that, after an initial rise, the
amount of input features selected for classification stabilizes. Resulting
MCFS subset sizes remain smaller or equal than a fifth of the input
features. Preventing from “small n large p scenarios” the potential of
the MCFS approach to substantially reduce dimensionality, without a
significant loss in classification accuracy was demonstrated. A detailed
analysis of MCFS feature sets allowed for identifying the most relevant
features from the considered typological feature groups. Thereby, in-
sights on the relationship between the relevance of a certain feature and
its underlying segmentation level were highlighted. OPV features were
among the most selected SAR MWF and thus are indicated to be par-
ticularly important for BUA extraction using VHR SAR data.

The presented workflow is designed in a modular manner and easily
allows for modifications. Since the MCFS is classifier independent fu-
ture experiments could asses the classification performance resulting
from its combination with other state-of-the-art statistical learning al-
gorithms such as a SVM (Cortes and Vapnik, 1995) or a Rotation Forest
(Rodriguez et al., 2006). Additionally, the integration of active learning
(e.g. Tuia et al., 2011) schemes should be investigated. Such methods
guide the user within the sampling process to efficiently collect the
most informative labelled samples and thereby reduce the number of
training samples required to achieve high magnitude classification ac-
curacies. This might be particularly useful within time-critical rapid
mapping activities in the course of ongoing crisis events (Voigt et al.,
2007). The application of semi-supervised learning could be tested to
also take account of the unlabelled data within the process of classifier
learning which has shown to be effective for addressing classification
problems characterized by sparse or biased sets of initial training data
(Persello and Bruzzone, 2014). With regard to available satellite sensors
or SAR imaging modes, future research should investigate i) enhanced
spatial and spectral resolution VHR optical data, e.g. from the WV-3
(0.31 m/panchromatic; 1.24m/8 MS-bands) mission as well as ii)
multi-polarized SAR data, e.g. TS-X High Resolution Spotlight dual pol
with an azimuth and a ground range resolution up to 2.2m and 1.2m
respectively, which may offer further potential for BUA detection in
temporary settlements.

The proposed approach allows for a detailed automated extraction
of BUA in a generic and data-driven way. Based on this information, in
conjunction with estimated area-based occupancy rates, an approx-
imate figure of the number of people living in a camp and their spatial
distribution pattern can be calculated. The provision of such informa-
tion is essential to obtain a better understanding of the situation in a
camp and draw conclusions for further developments (UNHCR, 2007;
Ehrlich et al., 2009).

Acknowledgements

The research leading to these results has received funding by the
German Federal Ministry for Economic Affairs and Energy's initiative
“Smart Data—innovations from data” under grant agreement: “smart
data for catastrophe management (sd-kama, grant agreement no.
01MD15008B)” and by the European Union's Seventh Framework
Programme for research, technological development and demonstration
under grant agreement no. 312912. The Pléiades satellite data deployed
in this study holds the following copyright: © CNES (2014),
Distribution Astrium Services/SPOT Image S.A., all rights reserved.

References

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution
models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43 (6),
1223–1232. http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x.

Baatz, M., Schäpe, A., 2000. Multiresolution segmentation - an optimization approach for
high quality multi-scale image segmentation. In: Strobl, J., Blaschke, T., Griesebner,
G. (Eds.), Angewandte Geographische Informations-Verarbeitung XII. Wichmann
Verlag, Karlsruhe, pp. 12–23.

Ban, Y., Jacob, A., Gamba, P., 2015. Spaceborne SAR data for global urbanmapping at

30m resolution using a robust urban extractor. ISPRS J. Photogramm. Remote Sens.
103, 28–37. http://dx.doi.org/10.1016/j.isprsjprs.2014.08.004.

Belgiu, M., Drăgut, L., 2014. Comparing supervised and unsupervised multiresolution
segmentation approaches for extracting buildings from very high resolution imagery.
ISPRS J. Photogramm. Remote Sens. 96, 67–75. http://dx.doi.org/10.1016/j.
isprsjprs.2014.07.002.

Benediktsson, J.A., Pesaresi, M., Amason, K., 2003. Classification and feature extraction
for remote sensing images from urban areas based on morphological transformations.
IEEE Trans. Geosci. Remote Sens. 41 (9), 1940–1949. http://dx.doi.org/10.1109/
TGRS.2003.814625.

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., Heynen, M., 2004.
Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready
information. ISPRS J. Photogramm. Remote Sens. 58 (3–4), 239–258. http://dx.doi.
org/10.1016/j.isprsjprs.2003.10.002.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer, New York
(738 pp).

Bjørgo, E., 2000. Using very high spatial resolution satellite sensor imagery to monitor
refugee camps. Int. J. Remote Sens. 21 (3), 611–616. http://dx.doi.org/10.1080/
014311600210786.

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J.
Photogramm. Remote Sens. 65 (1), 2–16. http://dx.doi.org/10.1016/j.isprsjprs.2009.
06.004.

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. http://dx.doi.org/10.
1023/A:1010933404324.

Brunner, D., Bruzzone, L., Ferro, A., Fortuny, J., Lemoine, G., 2008. Analysis of the double
bounce scattering mechanism of buildings in VHR SAR data. In: Proc. SPIE7109,
Image and Signal Processing for Remote Sensing XIV, 71090Q, http://dx.doi.org/10.
1117/12.801670.

Bruzzone, L., Carlin, L., 2006. A multilevel context-based system for classification of very
high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44 (9), 2587–2600.
http://dx.doi.org/10.1109/TGRS.2006.875360.

Carleer, A.P., Wolff, E., 2006. Urban land cover multi-level region-based classification of
VHR data by selecting relevant features. Int. J. Remote Sens. 27 (6), 1035–1051.

Checchi, F., Stewart, B.T., Palmer, J.J., Grundy, C., 2013. Validity and feasibility of a
satellite imagery-based method for rapid estimation of displaced populations. Int. J.
Health Geogr. 12 (1), 1–12. http://dx.doi.org/10.1186/1476-072X-12-4.

Chen, X., Li, H., Gu, Y., 2014. Multiview feature selection for very high resolution remote
sensing images. In: IEEE 2014 Fourth International Conference on Instrumentation
and Measurement, Computer, Communication and Control, pp. 539–543. http://dx.
doi.org/10.1109/IMCCC.2014.116.

Chen, X., Zhou, G., Chen, Y., Shao, G., Gu, Y., 2017. Supervised multiview feature se-
lection exploring homogeneity and heterogeneity with ℓ1,2-norm and automatic view
generation. IEEE Trans. Geosci. Remote Sens. 55 (4), 2074–2088. http://dx.doi.org/
10.1109/TGRS.2016.2636329.

Chini, M., Pacifici, F., Emery, W.J., 2009. Morphological operators applied to X-band SAR
for urban land use classification. In: 2009 IEEE International Geoscience and Remote
Sensing Symposium, Cape Town, pp. IV-506–IV-509. http://dx.doi.org/10.1109/
IGARSS.2009.5417424.

Cohen, J., 1960. A coefficient of agreement of nominal scales. Educ. Psychol. Meas. 20
(1), 37–46. Available online: http://journals.sagepub.com/doi/abs/10.1177/
001316446002000104, Accessed date: 7 June 2017.

Congalton, R.G., Green, K., 2008. Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices. CRC Press, Boca Raton, FL, USA (200 pp).

Cortes, C., Vapnik, V., 1995. Support vector networks. Mach. Learn. 20 (3), 273–297.
http://dx.doi.org/10.1023/A:1022627411411.

Dalal, A., 2014. Camp cities between planning and practice. Mapping the urbanisation of
Zaatari Camp. Stuttgart University & Ain Shams University. Available online: http://
iusd.asu.edu.eg/wp-content/uploads/2015/11/2ndInt_Dalal1.pdf, Accessed date: 7
June 2017.

Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L., 2010. Morphological attri-
bute profiles for the analysis of very high resolution images. IEEE Trans. Geosci.
Remote Sens. 48 (10), 3747–3762. http://dx.doi.org/10.1109/TGRS.2010.2048116.

Drăgut, L., Tiede, D., Levick, S.R., 2010. ESP: a tool to estimate scale parameter for
multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci.
24 (6), 859–871. http://dx.doi.org/10.1080/13658810903174803.

Du, P., Samat, A., Waske, B., Liu, S., Li, Z., 2015. Random Forest and Rotation Forest for
fully polarized SAR image classification using polarimetric and spatial features. ISPRS
J. Photogramm. Remote Sens. 105, 38–53. http://dx.doi.org/10.1016/j.isprsjprs.
2015.03.002.

Duch, W., 2006. Filter methods. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (Eds.),
Feature Extraction: Foundations and Applications. Springer Berlin Heidelberg, 978-3-
540-35488-8, pp. 89–117. http://dx.doi.org/10.1007/978-3-540-35488-8_4.

Ehrlich, D., Lang, S., Laneve, G., Mubareka, S., Schneiderbauer, S., Tiede, D., 2009. Can
earth observation help to improve information on population? In: Jasani, B., Pesaresi,
M., Schneiderbauer, S., Zeug, G. (Eds.), Remote Sensing from Space. Springer,
Dordrecht, pp. 211–237. http://dx.doi.org/10.1007/978-1-4020-8484-3_14.

Esch, T., Thiel, M., Bock, M., Roth, A., Dech, S., 2008. Improvement of image segmen-
tation accuracy based on multiscale optimization procedure. IEEE Geosci. Remote
Sens. Lett. 5 (3), 463–467. http://dx.doi.org/10.1109/LGRS.2008.919622.

Esch, T., Schenk, A., Thiel, M., Ullmann, T., Schmidt, M., Dech, S., 2010. Land cover
classification based on single-polarized VHR SAR images using texture information
derived via speckle analysis. In: 2010 IEEE International Geoscience and Remote
Sensing Symposium, Honolulu, HI. 2010. pp. 1875–1878. http://dx.doi.org/10.
1109/IGARSS.2010.5650031.

Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Schmidt, M., Mueller, A.A.,
Thiel, M., Dech, S.W., 2012. TanDEM-X mission-new perspectives for the inventory

P. Aravena Pelizari et al. Remote Sensing of Environment 209 (2018) 793–807

805

http://dx.doi.org/10.1111/j.1365-2664.2006.01214.x
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0010
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0010
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0010
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0010
http://dx.doi.org/10.1016/j.isprsjprs.2014.08.004
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.002
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.1016/j.isprsjprs.2003.10.002
http://dx.doi.org/10.1016/j.isprsjprs.2003.10.002
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0035
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0035
http://dx.doi.org/10.1080/014311600210786
http://dx.doi.org/10.1080/014311600210786
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1117/12.801670
http://dx.doi.org/10.1117/12.801670
http://dx.doi.org/10.1109/TGRS.2006.875360
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0065
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0065
http://dx.doi.org/10.1186/1476-072X-12-4
http://dx.doi.org/10.1109/IMCCC.2014.116
http://dx.doi.org/10.1109/IMCCC.2014.116
http://dx.doi.org/10.1109/TGRS.2016.2636329
http://dx.doi.org/10.1109/TGRS.2016.2636329
http://dx.doi.org/10.1109/IGARSS.2009.5417424
http://dx.doi.org/10.1109/IGARSS.2009.5417424
http://journals.sagepub.com/doi/abs/10.1177/001316446002000104
http://journals.sagepub.com/doi/abs/10.1177/001316446002000104
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0095
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0095
http://dx.doi.org/10.1023/A:1022627411411
http://iusd.asu.edu.eg/wp-content/uploads/2015/11/2ndInt_Dalal1.pdf
http://iusd.asu.edu.eg/wp-content/uploads/2015/11/2ndInt_Dalal1.pdf
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1080/13658810903174803
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.002
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.002
http://dx.doi.org/10.1007/978-3-540-35488-8_4
http://dx.doi.org/10.1007/978-1-4020-8484-3_14
http://dx.doi.org/10.1109/LGRS.2008.919622
http://dx.doi.org/10.1109/IGARSS.2010.5650031
http://dx.doi.org/10.1109/IGARSS.2010.5650031


and monitoring of global settlement patterns. J. Appl. Remote. Sens. 6 (1). http://dx.
doi.org/10.1117/1.JRS.6.061702.

Espindola, G.M., Camara, G., Reis, I.A., Bins, L.S., Monteiro, A.M., 2006. Parameter se-
lection for region-growing image segmentation algorithms using spatial auto-
correlation. Int. J. Remote Sens. 27 (14), 3035–3040. http://dx.doi.org/10.1080/
01431160600617194.

Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R., 2008. Spectral and spatial
classification of hyperspectral data using SVMs and morphological profiles. IEEE
Trans. Geosci. Remote Sens. 46 (11), 3804–3814. http://dx.doi.org/10.1109/TGRS.
2008.922034.

Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014. Do we need hundreds
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15,
3133–3181. Available online: http://jmlr.org/papers/volume15/delgado14a/
delgado14a.pdf, Accessed date: 6 June 2017.

Foody, G., 2002. Status of land cover classification accuracy assessment. Remote Sens.
Environ. 80 (1), 185–201. http://dx.doi.org/10.1016/S0034-4257(01)00295-4.

Fritz, T., Eineder, M., Mittermayer, J., Schättler, B., Balzer, W., Bruckreuß, S.,
Werninghaus, R., 2008. TerraSAR-X Ground Segment Basic Product Specification
Document. German Aerospace Center, Cluster Applied Remote Sensing,
Oberpfaffenhofen, Germany Available online: http://www.dlr.de/PortalData/1/
Resources/raumfahrt/weltraum/TX-GS-DD-3302_Basic-Product-Specification-
Document_1.5.pdf, Accessed date: 6 June 2017.

Gamba, P., 2013. Human settlements: a global challenge for EO data processing and in-
terpretation. Proc. IEEE 101 (3), 570–581. http://dx.doi.org/10.1109/JPROC.2012.
2189089.

Gamba, P., Aldrighi, M., Stasolla, M., 2011. Robust extraction of urban area extents in HR
and VHR SAR images. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 4, 27–34.
http://dx.doi.org/10.1109/JSTARS.2010.2052023.

Geiß, C., Taubenböck, H., 2015. Object-based postclassification relearning. IEEE Geosci.
Remote Sens. Lett. 12 (11), 2336–2340. http://dx.doi.org/10.1109/LGRS.2015.
2477436.

Geiß, C., Aravena Pelizari, P., Marconcini, M., Sengara, W., Edwards, M., Lakes, T.,
Taubenböck, H., 2015. Estimation of seismic building structural types using multi-
sensor remote sensing and machine learning techniques. ISPRS J. Photogramm.
Remote Sens. 104, 175–188. http://dx.doi.org/10.1016/j.isprsjprs.2014.07.016.

Geiß, C., Jilge, M., Lakes, T., Taubenböck, H., 2016a. Estimation of seismic vulnerability
levels of urban structures with multisensor remote sensing. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 9 (5), 1913–1936. http://dx.doi.org/10.1109/JSTARS.
2015.2442584.

Geiß, C., Klotz, M., Schmitt, A., Taubenböck, H., 2016b. Object-based morphological
profiles for classification of remote sensing imagery. IEEE Trans. Geosci. Remote
Sens. 54 (10), 5952–5963. http://dx.doi.org/10.1109/TGRS.2016.2576978.

Geiß, C., Aravena Pelizari, P., Schrade, H., Brenning, A., Taubenböck, H., 2017. On the
effect of spatially non-disjoint training and test samples on estimated model gen-
eralization capabilities in supervised classification with spatial features. IEEE Geosci.
Remote Sens. Lett. 14 (11), 2008–2012. http://dx.doi.org/10.1109/LGRS.2017.
2747222.

Genuer, R., Poggi, J.-M., Tuleau, C., 2008. Random forests: some methodological insights.
Rapport de recherche RR-6729. Available online: INRIAhttps://arxiv.org/abs/0811.
3619, Accessed date: 6 June 2017.

Ghamisi, P., Souza, R., Benediktsson, J.A., 2015. A survey on spectral–spatial classifica-
tion techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 53 (5),
2335–2353. http://dx.doi.org/10.1109/TGRS.2014.2358934.

Giada, S., DeGroeve, T., Ehrlich, D., Soille, P., 2003. Information extraction from very
high resolution satellite imagery over Lukole refugee camp, Tanzania. Int. J. Remote
Sens. 24, 4251–4266. http://dx.doi.org/10.1080/0143116021000035021.

Guyon, I., 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3,
1157–1182.

Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46 (1–3), 389–422. http://dx.
doi.org/10.1023/A:1012487302797.

Hall, M.A., 1999. Correlation-based Feature Selection for Machine Learning. Department
of Computer Science, The University of Waikato, Hamilton, New Zealand Available
online: http://www.cs.waikato.ac.nz/~mhall/thesis.pdf, Accessed date: 6 June
2017 (Ph.D. dissertation).

Hall, M.A., 2000. Correlation-based feature selection for discrete and numeric class ma-
chine learning. In: Langley, Pat (Ed.), Proceedings of the Seventeenth International
Conference on Machine Learning (ICML '00). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, pp. 359–366.

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural features for image classifi-
cation. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621. http://dx.doi.org/10.1109/
TSMC.1973.4309314.

Heinzel, J., Kemper, T., 2014. Use of new coastal spectral band for precise dwelling ex-
traction in the hagaderea refugee camp. In: Proceedings of ESA-EUSC-JRC 9th
Conference on Image Information Mining, http://dx.doi.org/10.2788/25852.

Herz, M., 2006. From Camp to City. Refugee Camps of the Western Sahara. Lars Müller
Publishers (512 pp).

Hughes, G., 1968. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf.
Theory 14 (1), 55–63. http://dx.doi.org/10.1109/TIT.1968.1054102.

Jenerowicz, M., Kemper, T., Soille, P., 2011. An automated procedure for detection of
IDP's dwellings using VHR satellite imagery. In: Proc. SPIE 8180, Image and Signal
Processing for Remote Sensing XVII, 818004, http://dx.doi.org/10.1117/12.898187.

Johnson, B., Xie, Z., 2013. Classifying a high resolution image of an urban area using
super-object information. ISPRS J. Photogramm. Remote Sens. 83, 40–49. http://dx.
doi.org/10.1016/j.isprsjprs.2013.05.008.

Kemper, T., Jenerowicz, M., Soille, P., Pesaresi, M., 2011. Enumeration of dwellings in

Darfur Camps from GeoEye-1 satellite images using mathematical morphology. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 4, 8–15. http://dx.doi.org/10.1109/
JSTARS.2010.2053700.

Klotz, M., Kemper, T., Geiß, C., Esch, T., Taubenböck, H., 2016. How good is the map? A
multi-scale cross-comparison framework for global settlement layers: evidence from
Central Europe. Remote Sens. Environ. 178, 191–212. http://dx.doi.org/10.1016/j.
rse.2016.03.001.

Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artif. Intell. 97 (1),
273–324. http://dx.doi.org/10.1016/S0004-3702(97)00043-X.

Kranz, O., Zeug, G., Tiede, D., Clandillon, S., Bruckert, D., Kemper, T., Lang, S., Caspard,
M., 2010. Monitoring refugee/IDP camps to support international relief action. In:
Altan, O., Backhaus, R., Boccardo, P., Zlatanova, S. (Eds.), Geoinformation for
Disaster and Risk Management — Examples and Best Practices. Joint Board of
Geospatial Information Societies (JB GIS), United Nations Office for Outer Space
Affairs (UNOOSA), pp. 51–56 (ISBN 978-87-90907-88-4).

Kuffer, M., Pfeffer, K., Sliuzas, R., 2016a. Slums from space—15 years of slum mapping
using remote sensing. Remote Sens. 8 (6), 455. http://dx.doi.org/10.3390/
rs8060455. (2016).

Kuffer, M., Pfeffer, K., Sliuzas, R., Baud, I., 2016b. Extraction of slum areas from VHR
imagery using GLCM variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9 (5),
1830–1840. http://dx.doi.org/10.1109/JSTARS.2016.2538563.

Laben, C.A., Brower, B.V., 2000. Process for Enhancing the Spatial Resolution of
Multispectral Imagery Using Pan-sharpening. US6011875 A.

Lal, T.N., Chapelle, O., Weston, J., Elisseeff, A., 2006. Embedded methods. In: Guyon, I.,
Nikravesh, M., Gunn, S., Zadeh, L.A. (Eds.), Feature Extraction: Foundations and
Applications, pp. 137–165. http://dx.doi.org/10.1007/978-3-540-35488-8_6.

Lang, S., Tiede, D., Hölbling, D., Füreder, P., Zeil, P., 2010. Earth observation (EO)-based
ex-post assessment of IDP camp evolution and population dynamics in Zam Zam,
Darfur. Int. J. Remote Sens. 31, 5709–5731. http://dx.doi.org/10.1080/01431161.
2010.496803.

Lee, J.-S., 1983. Digital image smoothing and the sigma filter. Comput. Vis. Graph. Image
Process. 24 (2), 255–269. http://dx.doi.org/10.1016/0734-189X(83)90047-6.

Leichtle, T., Geiß, C., Wurm, M., Lakes, T., Taubenböck, H., 2017a. Unsupervised change
detection in VHR remote sensing imagery – an object-based clustering approach in a
dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 54, 15–27. http://dx.
doi.org/10.1016/j.jag.2016.08.010.

Leichtle, T., Geiß, C., Lakes, T., Taubenböck, H., 2017b. Class imbalance in unsupervised
change detection – a diagnostic analysis from urban remote sensing. Int. J. Appl.
Earth Obs. Geoinf. 60, 83–98. http://dx.doi.org/10.1016/j.jag.2017.04.002.

Ma, L., Cheng, L., Li, M., Liu, Y., Ma, X., 2015. Training set size, scale, and features in
Geographic Object-Based Image Analysis of very high resolution unmanned aerial
vehicle imagery. ISPRS J. Photogramm. Remote Sens. 102, 14–27. http://dx.doi.org/
10.1016/j.isprsjprs.2014.12.026.

Martha, T.R., Kerle, N., van Westen, C.J., Jetten, V., Kumar, K.V., 2011. Segment opti-
mization and data-driven thresholding for knowledge-based landslide detection by
object-based image analysis. IEEE Trans. Geosci. Remote Sens. 49 (12), 4928–4943.
http://dx.doi.org/10.1109/TGRS.2011.2151866.

Masjedi, A., Valadan Zoej, M.J., Maghsoudi, Y., 2016. Classification of polarimetric SAR
images based on modeling contextual information and using texture features. IEEE
Trans. Geosci. Remote Sens. 54 (2), 932–943. http://dx.doi.org/10.1109/TGRS.
2015.2469691.

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the
delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. http://dx.
doi.org/10.1080/01431169608948714.

Pacifici, F., Chini, M., Emery, W.J., 2009. A neural network approach using multi-scale
textural metrics from very high-resolution panchromatic imagery for urban land-use
classification. Remote Sens. Environ. 113 (6), 1276–1292. http://dx.doi.org/10.
1016/j.rse.2009.02.014.

Pal, M., Foody, G.M., 2010. Feature selection for classification of hyperspectral data by
SVM. IEEE Trans. Geosci. Remote Sens. 48 (5), 2297–2307. http://dx.doi.org/10.
1109/TGRS.2009.2039484.

Persello, C., Bruzzone, L., 2014. Active and semisupervised learning for the classification
of remote sensing images. IEEE Trans. Geosci. Remote Sens. 52 (11), 6937–6956.
http://dx.doi.org/10.1109/TGRS.2014.2305805.

Pesaresi, M., Benediktsson, J.A., 2001. A new approach for the morphological segmen-
tation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39 (2),
309–320. http://dx.doi.org/10.1109/36.905239.

Richter, R., 1996. A spatially adaptive fast atmospheric correction algorithm. Int. J.
Remote Sens. 17 (6), 1201–1214. http://dx.doi.org/10.1080/01431169608949077.

Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J., 2006. Rotation forest: a new classifier en-
semble method. IEEE Trans. Pattern Anal. Mach. Intell. 28 (10), 1619–1630.
Available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1677518,
Accessed date: 6 June 2017.

Rougier, S., Puissant, A., Stumpf, A., Lachiche, N., 2016. Comparison of sampling stra-
tegies for object-based classification of urban vegetation from Very High Resolution
satellite images. Int. J. Appl. Earth Obs. Geoinf. 51, 60–73. http://dx.doi.org/10.
1016/j.jag.2016.04.005. (September 2016, ISSN 0303-2434).

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems
in the Great Plains with ERTS. In: Proceedings of the Third Earth Resources
Technology Satellite-1 Symposium, Greenbelt: NASA SP-351, 3010-317, Available
online: https://ntrs.nasa.gov/search.jsp?R=19740022614, Accessed date: 6 June
2017.

Schöpfer, E., Spröhnle, K., Aravena Pelizari, P., 2015. Temporäre Siedlungen: Wenn aus
Flüchtlingslagern Städte werden. In: Taubenböck, H., Wurm, M., Esch, T., Dech, S.
(Eds.), Globale Urbanisierung – Perspektive aus dem All. Springer, pp. 171–178.

Soille, P., 2004. Morphological Image Analysis: Principles and Applications, 2nd ed.

P. Aravena Pelizari et al. Remote Sensing of Environment 209 (2018) 793–807

806

http://dx.doi.org/10.1117/1.JRS.6.061702
http://dx.doi.org/10.1117/1.JRS.6.061702
http://dx.doi.org/10.1080/01431160600617194
http://dx.doi.org/10.1080/01431160600617194
http://dx.doi.org/10.1109/TGRS.2008.922034
http://dx.doi.org/10.1109/TGRS.2008.922034
http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://www.dlr.de/PortalData/1/Resources/raumfahrt/weltraum/TX-GS-DD-3302_Basic-Product-Specification-Document_1.5.pdf
http://www.dlr.de/PortalData/1/Resources/raumfahrt/weltraum/TX-GS-DD-3302_Basic-Product-Specification-Document_1.5.pdf
http://www.dlr.de/PortalData/1/Resources/raumfahrt/weltraum/TX-GS-DD-3302_Basic-Product-Specification-Document_1.5.pdf
http://dx.doi.org/10.1109/JPROC.2012.2189089
http://dx.doi.org/10.1109/JPROC.2012.2189089
http://dx.doi.org/10.1109/JSTARS.2010.2052023
http://dx.doi.org/10.1109/LGRS.2015.2477436
http://dx.doi.org/10.1109/LGRS.2015.2477436
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.016
http://dx.doi.org/10.1109/JSTARS.2015.2442584
http://dx.doi.org/10.1109/JSTARS.2015.2442584
http://dx.doi.org/10.1109/TGRS.2016.2576978
http://dx.doi.org/10.1109/LGRS.2017.2747222
http://dx.doi.org/10.1109/LGRS.2017.2747222
https://arxiv.org/abs/0811.3619
https://arxiv.org/abs/0811.3619
http://dx.doi.org/10.1109/TGRS.2014.2358934
http://dx.doi.org/10.1080/0143116021000035021
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0220
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0220
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1023/A:1012487302797
http://www.cs.waikato.ac.nz/~mhall/thesis.pdf
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0235
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0235
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0235
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0235
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.2788/25852
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0250
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0250
http://dx.doi.org/10.1109/TIT.1968.1054102
http://dx.doi.org/10.1117/12.898187
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.008
http://dx.doi.org/10.1016/j.isprsjprs.2013.05.008
http://dx.doi.org/10.1109/JSTARS.2010.2053700
http://dx.doi.org/10.1109/JSTARS.2010.2053700
http://dx.doi.org/10.1016/j.rse.2016.03.001
http://dx.doi.org/10.1016/j.rse.2016.03.001
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0285
http://dx.doi.org/10.3390/rs8060455
http://dx.doi.org/10.3390/rs8060455
http://dx.doi.org/10.1109/JSTARS.2016.2538563
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0300
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0300
http://dx.doi.org/10.1007/978-3-540-35488-8_6
http://dx.doi.org/10.1080/01431161.2010.496803
http://dx.doi.org/10.1080/01431161.2010.496803
http://dx.doi.org/10.1016/0734-189X(83)90047-6
http://dx.doi.org/10.1016/j.jag.2016.08.010
http://dx.doi.org/10.1016/j.jag.2016.08.010
http://dx.doi.org/10.1016/j.jag.2017.04.002
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.026
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.026
http://dx.doi.org/10.1109/TGRS.2011.2151866
http://dx.doi.org/10.1109/TGRS.2015.2469691
http://dx.doi.org/10.1109/TGRS.2015.2469691
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1016/j.rse.2009.02.014
http://dx.doi.org/10.1016/j.rse.2009.02.014
http://dx.doi.org/10.1109/TGRS.2009.2039484
http://dx.doi.org/10.1109/TGRS.2009.2039484
http://dx.doi.org/10.1109/TGRS.2014.2305805
http://dx.doi.org/10.1109/36.905239
http://dx.doi.org/10.1080/01431169608949077
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1677518
http://dx.doi.org/10.1016/j.jag.2016.04.005
http://dx.doi.org/10.1016/j.jag.2016.04.005
https://ntrs.nasa.gov/search.jsp?R=19740022614
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0390
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0390
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0390
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0395


Springer, Berlin, Germany.
Spröhnle, K., Tiede, D., Schoepfer, E., Füreder, P., Svanberg, A., Rost, T., 2014. Earth

observation-based dwelling detection approaches in a highly complex refugee camp
environment - a comparative study. Remote Sens. 6 (10), 9277–9297. http://dx.doi.
org/10.3390/rs6109277.

Spröhnle, K., Fuchs, E.-M., Aravena Pelizari, P., 2017. Object-based analysis and fusion of
optical and SAR satellite data for dwelling detection in refugee camps. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 10 (5), 1780–1791. http://dx.doi.org/10.1109/
JSTARS.2017.2664982.

Stumpf, A., Kerle, N., 2011. Object-oriented mapping of landslides using random forests.
Remote Sens. Environ. 115 (10), 2564–2577. http://dx.doi.org/10.1016/j.rse.2011.
05.013.

Taubenböck, H., Esch, T., Wurm, M., Roth, A., Dech, S., 2010. Object-based feature ex-
traction using high spatial resolution satellite data of urban areas. J. Spat. Sci. 55 (1),
117–133. http://dx.doi.org/10.1080/14498596.2010.487854.

Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., Dech, S., 2012. Monitoring
urbanization in mega cities from space. Remote Sens. Environ. 117, 162–176. http://
dx.doi.org/10.1016/j.rse.2011.09.015.

Taubenböck, H., Kraff, N.J., Wurm, M., 2018. The morphology of the Arrival City - A
global categorization based on literature surveys and remotely sensed data. Appl.
Geogr. 92, 150–167. http://dx.doi.org/10.1016/j.apgeog.2018.02.002. (ISSN 0143-
6228).

Trimble, 2014. eCognition Developer 9. Reference Book. Trimble Germany GmbH,
Munich, Germany.

Trunk, G.V., 1979. A problem of dimensionality: a simple example. IEEE Trans. Pattern
Anal. Mach. Intell. 3, 306–307. http://dx.doi.org/10.1109/TPAMI.1979.4766926.
(PAMI-1).

Tuia, D., Pacifici, F., Kanevski, M., Emery, W.J., 2009. Classification of very high spatial
resolution imagery using mathematical morphology and support vector machines.
IEEE Trans. Geosci. Remote Sens. 47 (11), 3866–3879. http://dx.doi.org/10.1109/
TGRS.2009.2027895.

Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J., 2011. A survey of active

learning algorithms for supervised remote sensing image classification. IEEE J. Sel.
Top. Signal Process. 5, 606–617. http://dx.doi.org/10.1109/JSTSP.2011.2139193.

Uhlmann, S., Kiranyaz, S., 2014. Classification of dual- and single polarized SAR images
by incorporating visual features. ISPRS J. Photogramm. Remote Sens. 90, 10–22.
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.005.

UNHCR, 2000. Key Principles for Decision-making. Refugee Operations and
Environmental Management; Engineering and Environmental Service Section,
UNHCR, Geneva, Switzerland Available online: http://www.unhcr.org/3b03b24d4.
html, Accessed date: 7 June 2017 (June 2000).

UNHCR, 2005. Environmental Guidelines. UNHCR, Geneva, Switzerland Available online:
http://www.unhcr.org/3b03b2a04.html, Accessed date: 18 October 2017 (August
2005).

UNHCR, 2007. Handbook for Emergencies, 3rd edition. United Nations High
Commissioner for Refugees, Geneva Available online. https://www.
humanitarianresponse.info/system/files/documents/files/UNHCR%20Handbook
%20for%20Emergencies.pdf, Accessed date: 20 October 2017.

UNHCR, 2014. Syria regional refugee response. Inter-agency information sharing portal.
Available online: Zaatari Refugee Camphttp://data.unhcr.org/syrianrefugees/
settlement.php?id=176&country=107&region=77, Accessed date: 7 June 2017.

UNHCR, 2016. Global Trends – Forced Displacement in 2015. UNHCR, Geneva,
Switzerland Available online: https://s3.amazonaws.com/unhcrsharedmedia/2016/
2016-06-20-global-trends/2016-06-14-Global-Trends-2015.pdf, Accessed date: 6
June 2017 (June 2016).

Voigt, S., Kemper, T., Riedlinger, T., Kiefl, R., Scholte, K., Mehl, H., 2007. Satellite image
analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote
Sens. 45 (6), 1520–1528. http://dx.doi.org/10.1109/TGRS.2007.895830.

Wang, S., So, E., Smith, P., 2015. Detecting tents to estimate the displaced populations for
post-disaster relief using high resolution satellite imagery. Int. J. Appl. Earth Obs.
Geoinf. 36, 87–93. http://dx.doi.org/10.1016/j.jag.2014.11.013.

Wurm, M., Taubenböck, H., Weigand, M., Schmitt, A., 2017. Slum mapping in polari-
metric SAR data using spatial features. Remote Sens. Environ. 194, 190–204. http://
dx.doi.org/10.1016/j.rse.2017.03.030.

P. Aravena Pelizari et al. Remote Sensing of Environment 209 (2018) 793–807

807

http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0395
http://dx.doi.org/10.3390/rs6109277
http://dx.doi.org/10.3390/rs6109277
http://dx.doi.org/10.1109/JSTARS.2017.2664982
http://dx.doi.org/10.1109/JSTARS.2017.2664982
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1016/j.rse.2011.05.013
http://dx.doi.org/10.1080/14498596.2010.487854
http://dx.doi.org/10.1016/j.rse.2011.09.015
http://dx.doi.org/10.1016/j.rse.2011.09.015
http://dx.doi.org/10.1016/j.apgeog.2018.02.002
http://dx.doi.org/10.1016/j.apgeog.2018.02.002
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0425
http://refhub.elsevier.com/S0034-4257(18)30031-2/rf0425
http://dx.doi.org/10.1109/TPAMI.1979.4766926
http://dx.doi.org/10.1109/TPAMI.1979.4766926
http://dx.doi.org/10.1109/TGRS.2009.2027895
http://dx.doi.org/10.1109/TGRS.2009.2027895
http://dx.doi.org/10.1109/JSTSP.2011.2139193
http://dx.doi.org/10.1016/j.isprsjprs.2014.01.005
http://www.unhcr.org/3b03b24d4.html
http://www.unhcr.org/3b03b24d4.html
http://www.unhcr.org/3b03b2a04.html
https://www.humanitarianresponse.info/system/files/documents/files/UNHCR%20Handbook%20for%20Emergencies.pdf
https://www.humanitarianresponse.info/system/files/documents/files/UNHCR%20Handbook%20for%20Emergencies.pdf
https://www.humanitarianresponse.info/system/files/documents/files/UNHCR%20Handbook%20for%20Emergencies.pdf
http://data.unhcr.org/syrianrefugees/settlement.php?id=176�&�country=107�&�region=77
http://data.unhcr.org/syrianrefugees/settlement.php?id=176�&�country=107�&�region=77
https://s3.amazonaws.com/unhcrsharedmedia/2016/2016-06-20-global-trends/2016-06-14-Global-Trends-2015.pdf
https://s3.amazonaws.com/unhcrsharedmedia/2016/2016-06-20-global-trends/2016-06-14-Global-Trends-2015.pdf
http://dx.doi.org/10.1109/TGRS.2007.895830
http://dx.doi.org/10.1016/j.jag.2014.11.013
http://dx.doi.org/10.1016/j.rse.2017.03.030
http://dx.doi.org/10.1016/j.rse.2017.03.030

	Multi-sensor feature fusion for very high spatial resolution built-up area extraction in temporary settlements
	Introduction
	Temporary settlement analyses – the benefit of Earth observation
	Image features for Earth observation-based built-up area detection
	Studies on building extraction in temporary settlements

	Study site and data
	Study site
	Satellite data
	Training and test data

	Methods
	Image segmentation and multi-level concept
	Feature calculation
	VHR multispectral features
	VHR SAR features

	Features subset selection
	Classification
	Experimental setup
	Feature grouping
	Sampling of training data
	Accuracy assessment


	Results and discussion
	Classification results
	Overall evaluation
	Test area-specific evaluation

	Insights on selected feature subsets

	Conclusion and outlook
	Acknowledgements
	References




